[1]吴双兰,野津厚,長坂陽介.2021年日本福岛县冲地震的震源破裂过程分析基于采用经验格林函数方法的波形反演[J].世界地震工程,2021,(02):001-12.
 WU Shuanglan,NOZU Atsushi,NAGASAKA Yosuke.Rupture process of the 2021 Fukushima-ken Oki earthquake estimated from waveform inversion with empirical Green’s functions[J].,2021,(02):001-12.
点击复制

2021年日本福岛县冲地震的震源破裂过程分析基于采用经验格林函数方法的波形反演
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2021年02期
页码:
001-12
栏目:
出版日期:
2021-04-30

文章信息/Info

Title:
Rupture process of the 2021 Fukushima-ken Oki earthquake estimated from waveform inversion with empirical Green’s functions
作者:
吴双兰 野津厚 長坂陽介
港湾空港技術研究所, 神奈川県, 239-0826, 日本
Author(s):
WU Shuanglan NOZU Atsushi NAGASAKA Yosuke
Port and Airport Research Institute, Kanagawa 239-0826, Japan
关键词:
2021年福岛县冲地震破裂过程经验格林函数波形反演强震动
Keywords:
2021 Fukushima-ken Oki earthquakerupture processempirical Green’s functionwaveform inversionstrong-ground motion
分类号:
P315
摘要:
利用中小震作为经验格林函数,选取0.2~2.0 Hz频段的强震数据进行波形反演,获得了2021年福岛县冲地震的破裂过程。结果表明:该地震的破裂主要集中在断层面距离震源约25 km的区域内,沿震源向东北延伸约5 km,向西南延伸约20 km;在该区域内,识别出两个滑动量集中的区域,均分布在距离震源约15 km西南侧,主要滑动量集中区域最大滑动量约3.2 m,深度基本与震源一致;次要滑动量集中区域略比主要滑动量集中区域浅约18 km。该震源模型对应矩震级Mw7.3,破裂速度为2.4 km/s。通过选择不同的中小震组合进行波形反演,结果对该震源模型特性无显著影响,揭示了该震源模型的稳健性;基于该震源模型合成反演分析中未使用的强震观测台站强震动,获得的合成波形与观测波形有很好的相关性,充分证明了该震源模型时空特征的可靠性。
Abstract:
The rupture process and generation mechanism of strong ground motions of the 2021 Fukushima-ken Oki earthquake were investigated through waveform inversions of strong-motion data in the frequency range of 0.2~2.0 Hz using empirical Green’s functions (EGFs). The results indicate that, the main rupture area of this earthquake was within 25 km from the hypocenter. In this region, two large slip regions, were identified: the primary one with the maximum slip of 3.2 m was located ~15 km southwest of the hypocenter, and the secondary one was centered~18 km shallower than the primary large slip region. A rupture velocity of 2.4 km/s was identified. Furthermore, the robustness of the source model was examined through additional waveform inversions with different combinations of EGF events. Additionally, using the estimated slip model, we synthesized strong motions at stations that were not used in the inversion analyses; the synthetic waveforms were consistent well with the observed waveforms, illustrating the validity of the major spatiotemporal characteristics of the slip model.

参考文献/References:

[1] 気象庁地震火山部. 令和3年2月13日23時08分頃の福島県沖の地震について-「平成23年(2011年)東北地方太平洋沖地震」について(第89報)-[EB/OL]. (2021-02-25)[03/10]. https://www.jma.go.jp/jma/press/2102/14a/kaisetsu202102140110.pdf. Japan Meteorological Agency. The 89th report on the 2021 Fukushima-ken Oki earthquake[EB/OL] (2021-02-25)[03/10]. https://www.jma.go.jp/jma/press/2102/14a/202102140110.html. (in Japanese)
[2] 消防庁災害対策本部.福島県沖を震源とする地震による被害及び消防機関等の対応状況(第15報)[EB/OL]. (2021-02-25)[03/12]. https://www.fdma.go.jp/disaster/info/items/20120218fukushimakennoki15.pdf. Fire and disaster management agency. Damage caused by the earthquake off the coast of Fukushima Prefecture and the response by firefighting organizations(15th report)[EB/OL] (2021-02-25)[03/10]. (in Japanese)
[3] 土木学会地震工学委员会地震被害调查小委员会. 2021年2月13日福島·宮城で発生した地震[EB/OL]. (2021-03-08)[03/14]. https://committees.jsce.or.jp/eec205/node/44. Earthquake engineeringcommittee, civil engineering society, subcommittee on earthquake damage investigation. The field survey on the 13th February 2021, Fukushima and Miyagi earthquake[EB/OL]. (2021-03-08)[03/14]. https://committees.jsce.or.jp/eec205/node/44. (in Japanese)
[4] 京都大学防災研究所. 京都大学防災研究所災害調査報告2021年2月13日に発生した福島県沖の地震について(地震·地震動の概要)[EB/OL]. (2021-02-15)[03/10]. http://wwwcatfish.dpri.kyoto-u.ac.jp/~goto/eq/20210213/report.html. Kyoto University, disaster reports from disaster prevention research institute. Earthquake summary on 13th Feb., 2021, Off Fukushima prefecture, Japan[EB/OL]. (2021-02-15)[03/10]. http://wwwcatfish.dpri.kyoto-u.ac.jp/~goto/eq/20210213/report.html. (in Japanese and English)
[5] 東北大学災害科学国際研究所.令和3年(2021年)2月福島県沖の地震[EB/OL]. (2021-02-19)[03/10]. https://irides.tohoku.ac.jp/research/prompt_investigation/2021fukushima-eq.html. Tohoku University,international research institute of disaster science. Report on the 2021 February Fukushimia-ken Oki earthquake.[EB/OL]. (2021-02-19)[03/10]. https://irides.tohoku.ac.jp/research/prompt_investigation/2021fukushima-eq.html. (in Japanese)
[6] USGS. M 7.1-72 km ENE of Namie, Japan[EB/OL]. (2021-02-13)[03/11].https://earthquake.usgs.gov/earthquakes/eventpage/us6000dher/executive.
[7] 東京大学地震研究所.[研究速報]2021年2月13日23時07分頃の福島県沖の地震[EB/OL]. (2021-03-08)[03/11]. http://www.eri.u-tokyo.ac.jp/2021/02/14/%e3%80%90%e7%a0%94%e7%a9%b6%e9%80%9f%e5%a0%b1%e3%80%912021%e5%b9%b4%ef%bc%92%e6%9c%8813%e6%97%a523%e6%99%8207%e5%88%86-%e9%a0%83%e3%81%ae%e7%a6%8f%e5%b3%b6%e7%9c%8c%e6%b2%96%e3%81%ae%e5%9c%b0%e9%9c%87/. The University of Tokyo, earthquake research institute.[QE]Earthquake and Volcano Information. 13th Feb. 2021 Fukushima-ken Oki earthquake[EB/OL]. (2021-03-08)[03/11]. http://www.eri.u-tokyo.ac.jp/2021/02/14/%e3%80%90%e7%a0%94%e7%a9%b6%e9%80%9f%e5%a0%b1%e3%80%912021%e5%b9%b4%ef%bc%92%e6%9c%8813%e6%97%a523%e6%99%8207%e5%88%86-%e9%a0%83%e3%81%ae%e7%a6%8f%e5%b3%b6%e7%9c%8c%e6%b2%96%e3%81%ae%e5%9c%b0%e9%9c%87/. (in Japanese)
[8] 张喆, 许力生.2021年2月13日日本本州东海岸MW7.2地震矩心矩张量解[J]. 地震学报, 2021, 43(2):1-5. ZHANG Zhe, XU Lisheng. The centroid moment tensor solution of the 13 February 2021MW7.2 earthquake in East Coast of Honshu, Japan[J]. Acta seismologica sinica, 2021, 43(2):1-5. (in Chinese)
[9] 防災科学技術研究所. 近地強震記録を用いた2021年2月13日福島県沖で発生した地震の震源インバージョン解析[EB/OL]. (2021-02-18)[03/14]. https://www.kyoshin.bosai.go.jp/kyoshin/topics/FukushimakenOki_20210213/inversion/inv_index.html. Nationalresearch institute for earth science and disaster resilience. Source inversion analysis of the February 13, 2021 Fukushima-ken Oki earthquake using near-field strong-motion records[EB/OL]. (2021-02-18)[03/14].https://www.kyoshin.bosai.go.jp/kyoshin/topics/FukushimakenOki_20210213/inversion/inv_index.html. (in Japanese)
[10] BOUCHON M. A simple method to calculate Green’s functions for elastic layered media[J]. Bulletin of the Seismological Society of America, 1981, 71(4):959-971.
[11] HARTZELL S H. Earthquake aftershocks as Green’s functions[J]. Geophysical Research Letters, 1978, 5(1):1-4.
[12] DREGER D S. Empirical Green’s function study of the January 17, 1994 Northridge, California earthquake[J]. Geophysical Research Letters, 1994, 21(24):2633-2636.
[13] ROUMELIOTI Z, DREGER D, Kiratzi A, et al. Slip distribution of the 7 September 1999 Athens earthquake inferred from an empirical Green’s function study[J]. Bulletin of the Seismological Society of America, 2003, 93(2):775-782.
[14] 野津厚.2005年福岡県西方沖の地震の震源モデル[J].地震第2輯, 2007, 59(3):253-270. NOZU A. Variable-slip rupture model for the 2005 west off Fukuoka Prefecture, Japan, earthquake-waveform inversion with empirical Green’sfunctions[J]. 2007, Zishi, 59(3):253-270. (in Japanese with English abstract)
[15] NOZU A, IRIKURA K. Strong-motion generation areas of a great subduction-zone earthquake:waveform inversion with empirical Green’s functions for the 2003 Tokachi-oki earthquake[J]. Bulletin of the Seismological Society of America, 2008, 98(1):180-197.
[16] NOZU A, NAGASAKA Y. Rupture process of the main shock of the 2016 Kumamoto earthquake with special reference to damaging ground motions:waveform inversion with empirical Green’s functions[J]. Earth, Planets, and Space, 2017, 69(1):1-18.
[17] 李启成, 景立平. 经验格林函数方法模拟地震动研究现状[J].世界地震工程, 2012, 28(4):89-94. LI Qicheng, JING Liping. A review of ground motion simulation with empirical Green’s function[J]. World Earthquake Engineering, 2012, 28(4):89-94. (in Chinese)
[18] 李宗超, 陈学良, 高孟潭, 等.经验格林函数方法模拟强地面运动的研究进展[J].世界地震工程, 2016, 32(2):209-216. LI Zongchao, CHEN Xueliang, GAO Mengtan et al. Research progress of empirical Green function method simulation strong ground motion[J]. World Earthquake Engineering, 2016, 32(2):209-216. (in Chinese)
[19] HARTZELL S H, HEATON T H. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73(6):1553-1583.
[20] LAWSON C L, HANSON R J. Solving least squares problems[M]. Prentice-Hall, Inc., New Jersey, 1974:340.
[21] WU S, NOZU A, NAGASAKA Y. Rupture process of the mainshock of the 2019 Ridgecrest earthquake sequence from waveform inversion with empirical Green’s functions[J]. Bulletin of the Seismological Society of America, 2021,111(2):1114-1031.
[22] WESSEL P, SMITH W H F, SCHARROO R, et al. Generic mapping tools:improved version released[J]. Eos, Transactions American Geophysical Union, 2013, 94(45):409-410.
[23] TOZER, B, SANDWELL D T, SMITH W H F, et al. Global bathymetry and topography at 15 arc seconds:SRTM15+[J]. Earth and Space Science, 2019, 6:1847-1864.

备注/Memo

备注/Memo:
收稿日期:2021-03-15;改回日期:2021-03-24。
基金项目:港湾空港技術研究所基础研究项目(1A-191-B)资助
作者简介:吴双兰(1987-),女,博士,主要从事强震动方面的研究.E-mail:wushuang7850@163.com
更新日期/Last Update: 1900-01-01