[1]戴靠山,钱雨凡,王健泽.近断层地震下楼层竖向加速度影响因素分析[J].世界地震工程,2021,(02):192-202.
 DAI Kaoshan,QIAN Yufan,WANG Jianze.Analysis of factors affecting vertical peak floor acceleration demands under near-fault ground motions[J].,2021,(02):192-202.
点击复制

近断层地震下楼层竖向加速度影响因素分析
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2021年02期
页码:
192-202
栏目:
出版日期:
2021-04-30

文章信息/Info

Title:
Analysis of factors affecting vertical peak floor acceleration demands under near-fault ground motions
作者:
戴靠山 钱雨凡 王健泽
四川大学 土木工程系, 四川 成都 610065
Author(s):
DAI Kaoshan QIAN Yufan WANG Jianze
Department of Civil Engineering, Sichuan University, Chengdu 610065, China
关键词:
钢抗弯框架近断层地震动楼层竖向绝对加速度质量不规则
Keywords:
steel moment-resisting framesnear-fault ground motionsvertical peak floor accelerationmass irregularity
分类号:
TU375.4
摘要:
现阶段基于性能的抗震设计思想不仅关注结构自身体系的安全,而且保护非结构构件在地震作用下使用功能完好。对于工业建筑结构,生产设备在地震作用下受损会影响震后功能恢复。加速度敏感型非结构构件一般采用楼层加速度指标来量化其地震损伤程度。以三个不同高度的钢抗弯框架规则结构体系为研究对象,采用与竖向目标谱匹配的近断层非脉冲和脉冲地震动作为竖向地震输入,考察不同质量不规则程度下,楼层竖向绝对加速度随建筑高度的变化趋势,并从反应谱角度分析不规则质量分布对楼层加速度响应的影响。结果表明:4层结构在非脉冲地震作用下楼层顶层处竖向绝对加速度是地面竖向峰值加速度的5倍之多,某一层质量的突变会引起该层及其他楼层竖向绝对加速度的明显变化。另外,对现有计算楼层竖向加速度响应的经验公式进行验证,发现美国ASCE 7-16规范的估计结果偏于保守。
Abstract:
The performance-based seismic design theory has been developed with the intention of focusing on the safety of the structural system and protecting non-structural components from earthquakes. For industrial structures, equipment damage due to earthquake would result in disruption of operation. Generally, floor acceleration demands are used to quantify the seismic response of non-structural components. In this study, special steel moment-resisting frames are focused and near-fault non-pulse and pulse ground motions compatible with the vertical target design spectrum are used as inputs. The distribution of the vertical peak floor acceleration demands (PFAv) along the height of the structure with irregular mass distribution is considered. In addition, the influence of irregular mass distribution on floor acceleration response is studied from the view of floor response spectrum. The results presented in this study show that the vertical peak floor acceleration amplification factor on the uppermost story of 4 floor structure under the non-pulse ground motions can surpass the value of 5 and the story where the mass irregularity is can significantly influence the PFAv of the whole structure. Moreover, the empirical equations for predicting the vertical seismic demands are assessed and the results show that the ASCE 7-16 is conservative.

参考文献/References:

[1] 张令心, 张明远, 陈永盛,等. 基于性态的非结构构件抗震设计初探[J].世界地震工程, 2016, 32(4):293-302. ZHANG Lingxin, ZHANG Mingyuan, CHEN Yongshen, et al. Preliminary study on performance-based seismic design of nonstructural components[J]. World Earthquake Engineering, 2016, 32(4):293-302. (in chinese)
[2] 孙得璋, 黄勇, 杨振宇,等. 九寨沟7.0级地震中典型非结构构件震害特征[J]. 地震工程与工程振动, 2019, 39(1):27-34. SUN Dezhang, HUANG Yong, YANG Zhenyu, et al. Seismic damages of typical nonstructural components in the M_s7.0 Jiuzhaigou earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2019, 39(1):27-34. (in chinese)
[3] LIM E, JIANG L, CHOUW N. Dynamic response of a non-structural component with three supports in multi-directional earthquakes[J]. Engineering Structures, 2017(150):143-152.
[4] TOPPOZADA T, BRANUM D. California earthquake history[C]. Annals of Geophysics, 2004.
[5] 刘小娟, 蒋欢军. 非结构构件基于性能的抗震研究进展[J]. 地震工程与工程振动, 2013, 33(6):53-62. LIU Xiaojuan, JIANG Huanjun.State-of-the-art of performance-based seismic research on nonstructural components[J]. Earthquake Engineering and Engineering Dynamics. 2013, 33(6):53-62. (in chinese)
[6] ROJAS HA, FOLEY C, PEZESHK S. Risk-based seismic design for optimal structural and nonstructural system performance[J]. Earthquake Spectra, 2011, 27(3):857-880.
[7] KAPUR KK, SHAO LC. Generation of seismic floor response spectra for equipment design[C], Proceedings of ASCE specialty conference on structural design of nuclear power plant facilities, Chicago, 27-91.
[8] BOZORGNIA Y, NIAZI M, W C K. Characteristics of free-field vertical ground motion during the Northridge earthquake[J]. Earthquake Spectra, 1995, 4(11):515-525.
[9] BOZORGNIA Y, NIAZI M. Distance scaling of vertical and horizontal response spectra of the Loma Prieta earthquake[J]. Earthquake Engineering & Structural Dynamics, 1993, 22(8):695-707.
[10] WANG JIANZE, DAI KAOSHAN, YIN YEXIAN, et al. Seismic performance-based design and risk analysis of thermal power plant building with consideration of vertical and mass irregularities[J]. Engineering Structures,2018,164.
[11] MIRANDA E, TAGHAVI S. A comprehensive study of floor acceleration demands in multi-story building[J]. American Society of Civil Engineers, 2009(364):616-626.
[12] TAGHAVI S, MIRANDA E. Response spectrum method for estimation of peak floor acceleration demand[C]. ATC and SEI Conference on Improving the Seismic Performance of Existing Buildings and Other Structures, 2009.
[13] MOSCHEN L, MEDINA R A, ADAM C. Vertical acceleration demands on column lines of steel moment-resisting frames[J]. Earthquake Engineering & Structural Dynamics, 2016,45(12).
[14] GREMER N, ADAM C, MEDINA R A, et al. Vertical peak floor accelerations of elastic moment-resisting steel frames[J]. Bulletin of Earthquake Engineering, 2019,17(6):3233-3254.
[15] ASCE7-16. Minimum Design Loads for Buildings and Other Structures[S]. The American Society of Civil Engineers, 2016.
[16] 建筑抗震设计规范:GB 50011-2016[S]. 北京:建筑工业出版社, 2016. Code for seismic design of buildings:GB 50011-2016[S]. Beijing:China Architecture & Building Press, 2016. (in chinese)
[17] ASCE7-10. Minimum Design Loads for Buildings and Other Structures[S]. The American Society of Civil Engineers, 2010.
[18] AISC. (2010b). Seismic provisions for structural steel buildings[R]. ANSI/AISC 341-10. Chicago, 2010.
[19] AISC. (2010c). Specification for structural steel buildings[R]. ANSI/AISC 360-10. Chicago, 2010.
[20] AISC. (2010a). Prequalified connections for special and intermediate steel moment frames for seismic applications[R]. ANSI/AISC 358-10. Chicago, 2010.
[21] MCKENNA F, FENVES G, SCOTT M. OpenSees:open system for earthquake engineering simulation. Pacifc Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, 2014.
[22] LIGNOS D G, KRAWINKLER H. Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading[J]. 2011, 137(11):1291-1302.
[23] ELKADY A, LIGNOS D G. Two-dimensional opensees numerical models for archetype steel buildings with special moment frames[R], University of Southampton, 2019.
[24] PEER ground motion database. Pacifc Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, 2010.
[25] NEHRP recommended seismic provisions for new buildings and other structures[R]. Applied Technology Council, 2009.
[26] FEMA. FEMA 356-Prestandard and commentary for the seismic rehabilitation of buildings[R]. Federal Emergency Management Agency, Washington, DC, 2000.

相似文献/References:

[1]韩淼,沙千里,温增平.近断层区橡胶支座隔震结构限位研究[J].世界地震工程,2013,(01):074.
 HAN Miao,SHA Qianli,WEN Zengping.Study on displacement limit of rubber bearing isolation buildings in near-fault region[J].,2013,(02):074.
[2]杨迪雄,李刚,程耿东.近断层地震动作用下隔震结构的优化设计[J].世界地震工程,2006,(01):001.
 Yang Di-xiong,Li Gang,Cheng Geng-dong.Optimum design of base-isolated structure subjected to near-fault ground motions[J].,2006,(02):001.
[3]韩淼,张文会,朱爱东.近断层地震动对层间隔震结构动力响应影响分析[J].世界地震工程,2015,(02):001.
 HAN Miao,ZHANG Wenhui,ZHU Aidong.Analysis of near-fault ground motions influence on dynamic responses of inter-story isolation structures[J].,2015,(02):001.
[4]郭金萍,陈学良,高孟潭,等.运动学震源模型对近断层长周期地震动模拟研究综述[J].世界地震工程,2015,(04):226.
 GUO Jinping,CHEN Xueliang,GAO Mengtan,et al.Review of long period strong ground motion simulations at near-field based on kinematic source models[J].,2015,(02):226.
[5]周继磊,杨迪雄,陈国海.近断层脉冲型地震动功率谱特性分析[J].世界地震工程,2017,33(01):018.
 ZHOU Jilei,YANG Dixiong,CHEN Guohai.Characteristic analysis of power spectrum for near-fault impulse type ground motion[J].,2017,33(02):018.
[6]刘子舟,王东升,陈磊,等.近断层地震动下设置BRB的双向减隔震桥梁地震反应[J].世界地震工程,2020,(02):155.
 LIU Zizhou,WANG Dongsheng,CHEN Lei,et al.Seismic response of bidirectional isolation bridges using BRBs under near-fault ground motions[J].,2020,(02):155.

备注/Memo

备注/Memo:
收稿日期:2020-07-12;改回日期:2020-09-21。
基金项目:国家自然科学基金(51878426,U1710111);成都市科技项目(2019-GH02-00081-HZ);中央高校基本科研业务费(20826041E4193)
作者简介:戴靠山(1977-),男,博士,教授,主要从事土木工程防灾减灾研究.E-mail:kdai@scu.edu.cn
通讯作者:王健泽(1990-),男,博士,助理研究员,主要从事土木工程防灾减灾研究.E-mail:jzwang@scu.edu.cn
更新日期/Last Update: 1900-01-01