[1]赵建锋,赵旭,孟凡涛.一种基于离散控制理论的无条件稳定显式算法[J].世界地震工程,2021,(02):214-222.
 ZHAO Jianfeng,ZHAO Xu,MENG Fantao.An unconditionally stable explicit algorithm based on discrete control theory[J].,2021,(02):214-222.
点击复制

一种基于离散控制理论的无条件稳定显式算法
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2021年02期
页码:
214-222
栏目:
出版日期:
2021-04-30

文章信息/Info

Title:
An unconditionally stable explicit algorithm based on discrete control theory
作者:
赵建锋 赵旭 孟凡涛
青岛理工大学 土木工程学院, 山东 青岛 266033
Author(s):
ZHAO Jianfeng ZHAO Xu MENG Fantao
School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, China
关键词:
离散控制理论无条件稳定显式算法结构动力学
Keywords:
discrete control theoryunconditionally stableexplicit algorithmstructural dynamics
分类号:
TU317
摘要:
基于离散控制理论,结合CR法和RST法提出一种无条件稳定的动力学显式新算法。以算法精度和稳定性为条件,通过离散传递函数推导参数表达式和极点,使得新算法可满足零振幅衰减率和零周期延长率。算法参数αγ作为传递格式选择参数,当αγ分别取1时,新算法对应CR法和RST法的位移速度表达式。对新算法的精度和稳定性理论分析表明:新算法可满足无振幅衰减和周期延长,且对于线性系统和非线性刚度软化系统为无条件稳定,对非线性刚度硬化系统为条件稳定,并给出了非线性刚度硬化系统的稳定性范围。算例分析验证了新算法的精度和稳定性,证明提出的新算法是可靠有效的。
Abstract:
Based on discrete control theory, combined with CR method and RST method, an unconditionally stable dynamic explicit algorithm was proposed. Based on the characteristics of the algorithm, the parameter expressions and poles are derived through discrete transfer functions. The new algorithm has zero amplitude decay and higher accuracy. When the algorithm parameters α and γ are equal to 1, the new algorithm corresponds to the displacement velocity expression of the CR method and RST method. Theoretical analysis on the accuracy and stability of the new algorithm showed that the new algorithm can meet the amplitude-free attenuation and period extension, and was unconditionally stable for linear systems and nonlinear stiffness softening systems, and conditionally stable for nonlinear stiffness hardening systems. Stability range of nonlinear stiffness hardening system was given. The example analysis verified the accuracy and stability of the new algorithm, and proved that the proposed new algorithm is reliable and effective.

参考文献/References:

[1] R.克拉夫, J.彭津, 王光远, 等译校. 结构动力学[M]. 北京:高等教育出版社, 2006. CLOUGH R, PENZIEN J. Dynamics of Structure[M]. WANG Guangyuan. Beijing:Higher Education Press, 2006.(in Chinese)
[2] 刘晶波, 杜修力. 结构动力学[M]. 北京:机械工业出版社, 2005. LIU Jingbo, DU Xiuli. Dynamics of Structure[M]. Beijing:China Machine Press, 2005.(in Chinese)
[3] 张伟伟, 金先龙. 统一格式的显式与隐式任意混合异步算法[J]. 力学学报, 2014, 46(3):436-446. ZHANG Weiwei, JIN Xianlong. An arbitrarily mixed explicit-implicit asynchronous integration algorithms based on uniform discretization format[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):436-446.(in Chinese)
[4] 李常青, 楼梦麟, 蒋丽忠. 结构动力方程求解中隐式格式向显式格式的转换[J]. 振动与冲击, 2012, 31(13):91-94. LI Changqing, LOU Menglin, JIANG Lizhong. Transformation of implicit method to explicit method for solving structural dynamic equation[J]. Journal of Vibration and Shock, 2012, 31(13):91-94.(in Chinese)
[5] NEWMARK N M. A method for computation of structural dynamics[J]. ASCE, 1959, 85(3):67-94.
[6] WILSON E L. A computer program for the dynamic stress analysis of underground structures[R]. Oakland:University of California, 1968.(in Chinese)
[7] 尚晓江. ANSYS/LS-DYNA动力分析方法与工程实例[M]. 北京:中国水利水电出版社, 2008, 129-135. SHANG Xiaojiang. ANSYS/LS-DYNA Dynamic Analysis Methods and Engineering Examples[M]. Beijing:China Water Power Press, 2008, 129-135.(in Chinese)
[8] 王进廷, 杜修力. 有阻尼体系动力分析的一种显式差分方法[J]. 工程力学, 2002, 19(3):109-112. WANG Jinting, DU Xiuli. An explicit difference method for dynamic analysis of a structure system with damping[J], Engineering Mechanics, 2002, 19(3):109-112.(in Chinese)
[9] 贾传果, 李可, 杨绍钊, 等. 实时子结构试验在数值积分和控制方面的研究进展[J]. 结构工程师, 2013, 29(4):188-194. JIA Chuanguo, LI Ke, YANG Shaozhao, et al. Research development on numerical integration and control aspects of real-time substructuring testing[J]. Structural Engineers, 2013, 29(4):188-194.(in Chinese)
[10] 孟凡涛, 赵建锋, 于广明. 实时子结构混合试验中的数值积分方法对比分析[J]. 地震工程与工程振动, 2011, 31(5):60-67. MENG Fantao, ZHAO Jianfeng, YU Guang-ming. Study on numerical integration methods in real-time hybrid testing experiment[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(5):60-67.(in Chinese)
[11] CHANG SY. Explicit pseudodynamic algorithm with unconditional stability[J]. Journal of Engineering Mechanics, 2002, 128(9):935-947.
[12] CHANG SY. An explicit method with improved stability property[J]. International Journal for Numerical Methods in Engineering, 2009, 77(8):1100-1120.
[13] CHANG SY. Family of structure-dependent explicit methods for structural dynamics[J]. Journal of Engineering Mechanics, 2014, 140(6):06014005.
[14] Cheng C, RICALS JM. Development of direct integration algorithms for structural dynamics using discrete control theory[J]. Journal of Engineering Mechanics, 2008, 143(8):676-683.
[15] WOORAM K, HO L J. An improved explicit time integration method for linear and nonlinear structural dynamics[J]. Computers and Structures, 206(2018):42-53.
[16] 杜晓琼, 杨迪雄, 赵永亮. 一种无条件稳定的结构动力学显式算法[J]. 力学学报, 2015, 47(2):310-319. DU Xiaoqiong, YANG Dixiong, ZHAO Yongliang. An unconditionally stable explicit algorithm for structural dynamics[J]. Chinese Journal of Technical and Applied Mechanics, 2015, 47(2):310-319. (in Chinese)
[17] GUI Y, WANG JT, JIN F, et al. Development of a family of explicit algorithms for structural dynamics with unconditional stability[J]. Nonlinear Dynamics, 2014, 77:1154-1170.
[18] TANG Y, LOU ML. New unconditional stable explicit integration algorithm for real-time hybrid testing[J]. Journal of Structural Mechanics, 2017, 143(7):04017029.
[19] 唐玉, 覃晖. 实时子结构试验中显式算法对比分析[J].工程力学,2020,37(S1):1-5+12. TANG Yu, QINHui. Comparisons of model-based explicit integration algorithms in real-time substructure testing[J], Engineering Mechanics, 2020, 37(S1):1-5+12. (in Chinese)
[20] 孟凡涛, 赵建锋. 基于Bathe隐式算法的结构动力学显式算法[J]. 振动与冲击, 2019, 38(6):226-232. MENG Fantao, ZHAO Jianfeng. Explicit algorithm for structural dynamics based on the Bathe implicit method[J], Journal of Vibration and Shock, 2019, 38(6):226-232.(in Chinese)
[21] BATHE K J, BAIG M M I. On a composite implicit time integration procedure for nonlinear dynamics[J]. Computers and Structures, 2005, 83(31/32):2513-2524.
[22] KATSUHIKO O. 离散时间控制系统(第二版)[M]. 蔡涛, 张娟. 北京:电子工业出版社, 2014. Katsuhiko O. Discrete-time Control systems (second edition)[M]. CAI Tao, ZHANG Juan. Beijing:Publishing House of Electronic Industry, 2014.(in Chinese)
[23] 张雄, 王天舒. 计算动力学[M]. 北京:清华大学出版社, 2007. ZHANG Xiong, WANG Tianshu. Computational Dynamics[M]. Beijing:Tsinghua University Press, 2007.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2020-07-20;改回日期:2020-09-15。
基金项目:国家自然科学基金资助项目(81775314)
作者简介:赵建锋(1976-),男,博士,副教授,主要从事结构抗震方面研究.E-mail:zhaojf@qut.edu.cn
更新日期/Last Update: 1900-01-01