[1]张俊,葛新广,邹万杰.TMD结构基于双过滤白噪声随机地震激励的系列响应的简明解[J].世界地震工程,2021,(03):094-103.
 ZHANG Jun,GE Xinguang,ZOU Wanjie.New explicit solutions for random response of structure equipped with TMD subjected to Clough-Penzien excitation[J].,2021,(03):094-103.
点击复制

TMD结构基于双过滤白噪声随机地震激励的系列响应的简明解
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2021年03期
页码:
094-103
栏目:
出版日期:
2021-07-31

文章信息/Info

Title:
New explicit solutions for random response of structure equipped with TMD subjected to Clough-Penzien excitation
作者:
张俊 葛新广 邹万杰
广西科技大学 土木建筑学院, 广西 柳州 545006
Author(s):
ZHANG Jun GE Xinguang ZOU Wanjie
School of Civil Engineering & Architecture, Guangxi University of Science and Technology, Liuzhou 545006, China
关键词:
TMD结构简明解体系动力可靠度双过滤白噪声谱谱矩
Keywords:
structure equipped with TMDconcise solutionssystem dynamic reliabilityClough-Penzien spectrumspectrum
分类号:
TU318
摘要:
针对既有方法在分析TMD结构基于双过滤白噪声激励下结构响应的解表达式复杂而导致计算效率低的问题,提出了一种简明封闭解法。首先,利用双过滤白噪声谱的滤波方程与TMD结构的地震动方程联立,可将TMD结构基于复杂的双过滤白噪声激励准确的表示为易于求解的运动方程;其次,基于复模态法获得TMD耗能结构位移、层间位移的系列响应的复特征值及复模态参与系数;然后基于随机振动理论获得了TMD结构随机地震动系列响应(相对于地面绝对位移和结构层间位移)的功率谱统一形式的二次正交解,进而获得了TMD结构系列随机响应的0-2阶谱矩和方差的简明封闭解。最后研究了基于首超破坏准、Markov过程假设及串联失效模式的TMD结构的体系动力可靠度。通过一算例分析,表明了本文方法的正确性和高效性。因此,本文方法可用于各类线性结构基于复杂的随机地震动响应的分析及其动力可靠度计算。
Abstract:
In order to solve the problem that the solution expressions of TMD structure response based on Clough-Penzien excitation are complex and lead to low computational efficiency, a concise closed-form solution is proposed. Firstly, the filtering equation of double filtered white noise spectrum is combined with the ground motion equation of TMD structure, and the complex random seismic motion spectrum of TMD structure is accurately transformed into the ground motion based on the concise white noise spectrum. Secondly, the complex modal vibration eigenvalues and corresponding modal participation coefficients of TMD structure are obtained by using the complex mode method. Then, based on the random vibration theory, the quadratic orthogonal solution of the power spectrum unified form of the random ground motion series response (the absolute displacement relative to the ground and the inter-story displacement of the structure) is obtained based on the random vibration theory, and the concise closed-form solution of 0-2 order spectral moments and variance of the structural series response are obtained. Finally, the dynamic reliability of TMD structure based on first passage failure criterion, Markov process hypothesis and series failure mode is studied. An example is given to show the correctness and efficiency of the presented method. So, the method presented in the paper can be used to analyze and calculate the dynamic reliability of all kinds of linear structures based on complex random ground motion response.

参考文献/References:

[1] 周锡元, 吴育才.工程抗震的新发展[M].北京:清华大学出版社, 2002:1-25. ZHOU Xiyuan, WU Yucai. New Development of Seismic Engineering[M]. Beijing:Tsinghua University Press, 2002:1-25.
[2] NEHRP. Recommended seismic provisions for new buildings and other structures FEMA P-1050-12015 ed.[M]:Washington, D.C.:Building Seismic Safety Council, 2015.NEHRP Recommended seismic provisions for new buildings and other structures FEMA P-1050-1, Washington, D.C:2015.
[3] CHU S Y, SOONG T T, REINHORN A M. Active, Hybrid and Semi-active Structural Control[M]. New York John Wiley & Sons Inc, 2005.
[4] ATHANASIOS A, MARKOU, GEORGE S, et al. Stochastic energy measures for hybrid base isolation systems[J]. Soil Dynamics and Earthquake Engineering, 2019, 119:454-470.
[5] 周云.粘弹性阻尼减震结构设计[M].武汉:武汉理工大学出版社, 2006:1-35. ZHOU Yun. Design of Viscoelastic Damping Structure[M]. Wuhan:Wuhan University of Technology Press, 2006:1-35.
[6] 李创第, 黄天立, 李暾, 等.带TMD结构随机地震响应分析的复模态法[J].振动与冲击, 2003, (1):38-41. LI Chuangdi, HUANG Tianli, LI Huang, et al. Complex mode method for random seismic response analysis of structures with TMD[J]. Journal of Vibration and Shock, 2003, (1):38-41.
[7] 李慧, 刘迪, 杜永峰, 等.基于虚拟激励法的框架-摇摆刚架结构体系的动力可靠度研究[J].振动与冲击, 2013, 32(23):170-174. LI Hui, LIU Di, DU Yongfeng, et al. Study on dynamic reliability of frame sway frame structure system based on virtual excitation method[J]. Journal of Vibration and Shock, 2013, 32(23):170-174.
[8] 吕慧敏, 杨德健, 薛娜蕾.大底盘双塔结构风振控制研究分析[J].世界地震工程, 2020, 36(2):101-110. LV Huimin, YANG Dejian, XUE Nalei. Research and analysis of wind vibration control of double towers structure with large chassis[J]. World Earthquake Engineering,,2020,36(2):101-110.(in Chinese)
[9] 林桂武, 葛新广, 李暾.TMD耗能结构基于Kanai-Tajimi谱的地震动响应新简明解[J].应用力学学报, 2020, 37(5):2248-2256,2337. LIN Guiwu, GE Xinguang, LI Tun. New concise solutions for random response of structure equipped with TMD subjected to Kanai-Tajimi excitation[J]. Chinese Journal of Applied Mechanics,2020,37(5):2248-2256+2337.(in Chinese)
[10] MAKOLA M, JAMEEl H, ANDY R, et al. Use of a shared tuned mass damper (STMD) to reduce vibration and pounding in adjacent structures[J]. Earthquake Engineering & Structural Dynamics, 2001, 30(8):1185-1201.
[11] ANAJAFI H, MEDINA R A. Comparison of the seismic performance of a partial mass isolation technique with conventional TMD and base-isolation systems under broad-band and narrow-band excitations[J]. Engineering Structures, 2018, 158:110-123.
[12] BIGDELI Y, KIM D. Damping effects of the passive control devices on structural vibration control:TMD, TLC and TLCD for varying total masses[J]. KSCE Journal of Civil Engineering, 2016, 20(1):301-308.
[13] 腾军.结构随机振动理论、技术和方法[M].北京:科学出版社, 2009. TENG Jun. Theory, Technology and Method of Structural Random Vibration[M]. Beijing:Science Press, 2009.
[14] 方同.工程随机振动[M].北京:国防工业出版社, 1995. FANG Tong. Engineering Random Vibration[M]. Beijing:National Defense Industry Press, 1995.
[15] HOUSNER G W. Characteristics of strong motion earthquakes[J]. BSSA, 1947, 37:19-31.
[16] CLOUGH R W, PENZIEN J. Dynamics of Structures.2nd Edition.[M]. New York:McGraw Hill, 1993:55-77.
[17] 欧进萍, 牛荻涛, 杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动, 1991, (3):45-54. OU Jinping, NIU Ditao, DU Xiuli. The model of random ground motion and its parameters are used to determine[J]. Seismic Engineering and Engineering Vibration, 1991, (3):45-54.
[18] 李鸿晶, 陈辰.一种平稳地震地面运动的改进金井清谱模型[J].工程力学, 2014, 31(2):158-163. LI Hongjing, CHEN Chen. An improved Jinjing Qingpu model for stable earthquake ground motion[J]. Engineering Mchanics, 2014, 31(2):158-163.
[19] LIN B C, TADJBAKHSH I G, PAPAGEORGIOU A S, et al. Response of base-isolated buildings to random excitations described by the Clough-Penzien spectral model[J]. Earthquake Engineering & Structural Dynamics, 1989, 18(1):49-62.
[20] 李创第, 丁晓华, 陈俊忠, 等.基础隔震结构基于Clough-Penzien谱随机地震响应分析的复模态法[J]. 振动与冲击, 2006, (5):162-165+199. LI Chuangdi, DING Xiaohua, CHEN Junzhong, et al. Complex mode method based on clough penzien spectrum random seismic response analysis of base isolated structure[J].Journal of Vibration and Shock, 2006, (5):162-165, 199.
[21] 曹宏, 李桂青, 李秋胜.结构动力可靠性理论及其应用[M].北京:地震出版社, 1993:113-128. CAO Hong, LI Guiqing, LI Qiusheng. Structural Dynamic Reliability Theory and Its Application[M]. Beijing:Seismic Press, 1993:113-128.
[22] VANMARCKE E H. On the distribution of the first-passage time for normal stationary random processes[J]. Journal of Engineering Mechanics, ASCE, 1975, 42(1):215-220.
[23] 林家浩.随机振动的虚拟激励法[M].北京:科学出版社, 2004:30-63. LIN Jiahao. Pseudo Excitation Method for Random Vibration[M]. Beijing:Science Press, 2004:30-63.
[24] SHIAO M C. First passage problem:a probabilistic dynamic analysis for hot aerospace components[J]. Probabilistic Engineering Mechanics, 1991, 6(3):139-147.
[25] BERGMAN L A, SPENCDER B F. First passage time for linear systems with stochastic coefficients[J]. Probabilistic Engineering Mechanics, 1987, 2(1):46-53.
[26] 刘娇, 刘敬敏, 余波, 等.工程结构体系可靠度分析的最新研究进展[J].工程力学, 2017, 34(S1):31-37. LIU Jiao, LIU Jingmin, YU Bo, et al. Latest research progress in reliability analysis of engineering structure system[J]. Engineering Mechanics, 2017, 34(S1):31-37.

备注/Memo

备注/Memo:
收稿日期:2020-03-03;改回日期:2020-12-25。
基金项目:国家自然科学基金项目(51368008);广西科技大学创新团队项目(2016年)资助;广西重点研发计划(桂科AB19259011)
作者简介:张俊(1966-),男,实验师,从事土木工程结构检测和结构地震动响应研究.E-mail:834873246@qq.com
通讯作者:葛新广(1977-),男,讲师,从事建筑结构振动控制研究.E-mail:gxgzlr.2008@163.com
更新日期/Last Update: 1900-01-01