[1]余建星,袁祺伟,余杨,等.地震断层对管道压溃压力的影响[J].世界地震工程,2020,(02):180-190.
 YU Jianxing,YUAN Qiwei,YU Yang,et al.Effect of earthquake fault on the collapse pressure of pipeline[J].,2020,(02):180-190.
点击复制

地震断层对管道压溃压力的影响
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2020年02期
页码:
180-190
栏目:
出版日期:
2020-04-10

文章信息/Info

Title:
Effect of earthquake fault on the collapse pressure of pipeline
作者:
余建星123 袁祺伟12 余杨12 王华昆12 王彩妹12 赵岩12
1. 天津大学 水利工程仿真与安全国家重点实验室, 天津 300072;
2. 天津大学 天津市港口与海洋工程重点实验室, 天津 300072;
3. 北部湾大学 机械与船舶海洋工程学院, 广西 钦州 535011
Author(s):
YU Jianxing123 YUAN Qiwei12 YU Yang12 WANG Huakun12 WANG Caimei12 ZHAO Yan12
1. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;
2. Tianjin Key Laboratory of Port and Ocean Engineering, Tianjin University, Tianjin 300072, China;
3. College of Mechanical and Marin
关键词:
海底管道地震断层有限元分析压溃压力随机土体
Keywords:
submarine pipelineseismic faultfinite element analysiscollapse pressurerandom soil
分类号:
P756.2
摘要:
利用有限元软件ABAQUS,结合用户自定义Python程序,开展地震断层作用下深海管道局部变形和压溃过程的数值模拟。分析均质土体和随机分布土体模型的地震断层位移大小对管道局部变形的影响,并分析断层诱发的局部挤压变形对管道压溃压力的影响。研究表明:相比于断层走向与管道轴线方向垂直的走滑断层,断层走向与管道轴线方向夹角为45°的走滑断层作用下管道的压溃压力较小,且当断层走向为管道轴线方向逆时针旋转45°时,左旋走滑断层作用下管道的压溃压力低于右旋走滑断层作用下的管道压溃压力。断层位移相同时,管道径厚比越大,压溃压力越小。考虑土壤随机性时,由于APIX65钢制管道刚性较大,且管道两侧土体内聚力和摩擦角分散于均质土壤土体参数均值两侧,因此断层作用过程中管道受到的土压力在均质土壤模型中的土压力数值处上下波动。
Abstract:
Numerical simulation on the local deformation and collapse process of the deep-sea pipelines under the action of earthquake faults was carried out by using the finite element software ABAQUS and the user-defined Python program. The influence of the fault displacement of the homogeneous soil and randomly distributed soil model on the local deformation of pipeline was analyzed, and the influence of local compression deformation induced by the fault on the pressure of pipeline collapse was studied.The results show that compared with the strike-slip fault whose strike is perpendicular to the pipeline axis, that with an angle of 45° between the fault strike and the pipeline axis induces smaller collapse pressure of the pipeline. And when the strike of the strike-slip fault rotates counterclockwise 45° from the direction of the pipeline axis, the collapse pressure of the pipeline under the action of the left-lateral strike-slip fault is lower than that under the action of the right-lateral strike-slip fault. With the same fault displacement, the larger the diameter-thickness ratio is, the smaller the collapse pressure is. When the soil randomness is taken into account, since the rigidity of the APIX65 steel pipe is high and the cohesion and friction angle of the soil on both sides of the pipe are dispersed on both sides of the mean value of the soil parameters in homogeneous soil, the soil pressure to the pipe during fault action fluctuates up and down in homogeneous soil model.

参考文献/References:

[1] WANG H, YU Y, YU J, et al. Effect of 3D random pitting defects on the collapse pressure of pipe-part I:experiment[J]. Thin-Walled Structures, 2019, 129:512-526.
[2] WANG H, YU Y, YU J, et al. Effect of 3D random pitting defects on the collapse pressure of pipe-part II:numerical analysis[J]. Thin-Walled Structures, 2018, 129:527-541.
[3] 刘啸奔, 张宏, 李勐, 等. 断层作用下埋地管道应变分析方法研究进展[J]. 油气储运, 2016, 35(8):799-807. LIU Xiaoben, ZHANG Hong, LI Meng, et al. Research progress of strain analysis methods for buried pipelines under faulting process[J]. Oil & Gas Storage and Transportation, 2016, 35(8):799-807.(in Chinese)
[4] 刘爱文, 张素灵, 胡聿贤, 等. 地震断层作用下埋地管线的反应分析[J]. 地震工程与工程振动, 2002, 22(2):22-27. LIU Aiwen, ZHANG Sulin, HU Yuxian, et al. A metho for analyzing response of buried pipeline due to earthquake fault movement[J]. Earthquak Engineering an Engineering Vibration, 2002, 22(2):22-27.(in Chinese)
[5] 黄东梅, 李创第, 陈俊忠, 等. 结构-土相互作用体系的地震作用取值-基于规范地震动模型的复模态时域法[J]. 振动工程学报, 2006, (4):571-577. HUANG Dongmei, LI Chuangdi, CHEN Junzhong, et al. Earthquake act ion calculation of structure-soil interact ion system-according to complex mode method in time domain based on the earthquake model about seismic code[J]. Journal of Vibration Engineering, 2006, (4):571-577.(in Chinese)
[6] 王滨, 李昕, 周晶. 地震断层作用下的埋地管道等效分析模型[J]. 防灾减灾工程学报, 2009, 29(1):44-50. WANG Bin, LI Xin, ZHOU Jin. An equivalent analytical modelof buried pipelines subject to fault movement[J]. Journal of Disaster Prevention and Mitigatio Engineering, 2009, 29(1):44-50.(in Chinese)
[7] 闫相祯, 张立松, 杨秀娟. 管道穿越地震断层管土耦合大变形壳模型的应变响应规律研究[J]. 土木工程学报, 2010, 43(8):132-139. YAN Xiangzhen, ZHANG Lisong, YANG Xiujuan. Strain response study of oil gas pipeline crossing earthquake fault based on pipeline soil coupling and large deformation shell model[J]. China Civil Engineering Journal, 2010, 43(8):132-139.(in Chinese)
[8] 杨海建. 基于人工边界的海底管道地震动力响应研究[D]. 天津:天津大学建筑工程学院, 2016. YANG Haijian. Research on seismic response of subsea pipeline based on artificial boundary[D]. Tianjin:School of Architectural Engineering Institute, Tianjin University, 2016.(in Chinese)
[9] JOSHI S, PRASHANT A, DEB A, et al. Analysis of buried pipelines subjected to reverse fault motion[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(7):930-940.
[10] VAZOURAS P, KARAMANOS S A, DAKOULAS P. Finite element analysis of buried steel pipelines under strike-slip fault displacements[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(11):1361-1376.
[11] VAZOURAS P, KARAMANOS S A, DAKOULAS P. Mechanical behavior of buried steel pipes crossing active strike-slip faults[J]. Soil Dynamics and Earthquake Engineering, 2012, 41:164-180.
[12] VAZOURAS P, DAKOULAS P, KARAMANOS S A. Pipe-soil interaction and pipeline performance under strike-slip fault movements[J]. Soil Dynamics and Earthquake Engineering, 2015, 72:48-65.
[13] KAYA E S, UCKAN E, OROURKE M J, et al. Failure analysis of a welded steel pipe at Kullar fault crossing[J]. Engineering Failure Analysis, 2017, 71:43-62.
[14] HUANG H, GONG W, KHOSHNEVISAN S, et al. Simplified procedure for finite element analysis of the longitudinal performance of shield tunnels considering spatial soil variability in longitudinal direction[J]. Computers and Geotechnics, 2015, 64:132-145.
[15] MCCARRON W O. Subsea flowline buckle capacity considering uncertainty in pipe-soil interaction[J]. Computers and Geotechnics, 2015, 68:17-27.
[16] YU J, WANG H, FAN Z, et al. Computation of plastic collapse capacity of 2D ring with random pitting corrosion defect[J]. Thin-Walled Structures, 2017, 119:727-736.
[17] YU J, SUNZ, LIU X X, et al. Ring-truss theory on offshore pipelines buckle propagation[J]. Thin-Walled Structures, 2014, 85:313-323.
[18] 费康, 张建伟. ABAQUS在岩土工程中的应用[M]. 北京:中国水利水电出版社, 2010. FEI Kang, ZHANG Jianwei. ABAQUS Application in Geotechnical Engineering[M]. Beijing:China WaterPower Press, 2010.(in Chinese)
[19] 刘庆阳. 海底跨断层输气管道断层作用下的数值模拟与分析[D]. 哈尔滨:哈尔滨工业大学建筑与土木工程学院, 2016. LIU Qingyang. Simulation and analysis of submarine pipeline crossing active fault[D]. Harbin:School of Architecture and Civil Engineering, Harbin Institute of Technology, 2016.(in Chinese)
[20] 孙雷, 丁云峰, 姜宜辰, 等. 钢悬链线触地区管土作用模型试验[J]. 中国科技论文, 2017, 12(19):2229-2235. SUN Lei, DING Yunfeng, JIANG Yichen, et al. Experimental research on pipe-soil interaction of downtown zone on in steel canteary riser[J]. China Sciencepaper, 2017, 12(19):2229-2235.(in Chinese)
[21] LIU Y, ZHANG W, ZHANG L, et al. Probabilistic stability analyses of undrained slopes by 3D random fields and finite element methods[J]. Geoscience Frontiers, 2018, 9(6):1657-1664.
[22] POPESCU R, DEODATIS G, NOBAHAR A. Effects of random heterogeneity of soil properties on bearing capacity[J]. Probabilistic Engineering Mechanics, 2005, 20(4):324-341.
[23] 朱志澄, 曾佐勋, 樊光明.构造地质学[M].北京:中国地质大学出版社, 1999 ZHU Zhicheng, ZENG Zuoxun, FAN Guangming. Structural Geology[M].Beijing:China University of Geosciences Press, 1999.(in Chinese)

相似文献/References:

[1]李杨,余建星,余杨,等.穿越走滑断层海底管道局部屈曲研究及应变响应预测[J].世界地震工程,2019,35(04):105.
 LI Yang,YU Jianxing,YU Yang,et al.Research on local buckling and strain response prediction of submarine pipelines across strike-slip faults[J].,2019,35(02):105.
[2]徐龙军,彭龙强,谢礼立.地震断层形态研究综述[J].世界地震工程,2023,39(01):028.[doi:10.19994/j.cnki.WEE.2023.0004]
 XU Longjun,PENG Longqiang,XIE Lili.Review of rupture morphology of seismic faults[J].,2023,39(02):028.[doi:10.19994/j.cnki.WEE.2023.0004]

备注/Memo

备注/Memo:
收稿日期:2019-09-13;改回日期:2020-01-15。
基金项目:国家自然科学基金面上项目(51879189),国家自然科学基金青年基金(51609169),广西科技重大专项(桂科AA17292007)
作者简介:余建星(1958-),男,博士,教授,主要从事深海结构可靠性等方面的研究.E-mail:yjx2000.tju.edu.cn
更新日期/Last Update: 1900-01-01