[1]朱景宝,何斌,李山有,等.2021年5月21日云南漾濞地震及5月22日青海玛多地震的支持向量机震级估算[J].世界地震工程,2021,(03):065-72.
 ZHU Jingbao,HE Bin,LI Shanyou,et al.Magnitude estimation via support vector machine for the earthquakes occur in Yangbi, Yunnan on May 21, 2021 and in Maduo, Qinghai on May 22, 2021[J].,2021,(03):065-72.
点击复制

2021年5月21日云南漾濞地震及5月22日青海玛多地震的支持向量机震级估算
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
期数:
2021年03期
页码:
065-72
栏目:
出版日期:
2021-07-31

文章信息/Info

Title:
Magnitude estimation via support vector machine for the earthquakes occur in Yangbi, Yunnan on May 21, 2021 and in Maduo, Qinghai on May 22, 2021
作者:
朱景宝 何斌 李山有 宋晋东
中国地震局工程力学研究所 中国地震局地震工程与工程振动重点实验室, 黑龙江 哈尔滨 150080
Author(s):
ZHU Jingbao HE Bin LI Shanyou SONG Jindong
Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
地震预警支持向量机漾濞地震玛多地震震级估算
Keywords:
earthquake early warningsupport vector machineearthquake occurred in Yangbi Countyearthquake occurred in Maduo Countymagnitude estimation
分类号:
P315.3P315.7P315.92
摘要:
2021年5月21日及5月22日,云南漾濞县与青海玛多县分别发生破坏性地震,主震震级分别为Ms6.4级与Ms7.4级。本文基于机器学习中的支持向量机方法,以多类型特征参数为输入建立地震预警震级估算模型SVM-M,离线模拟云南漾濞Ms5.6级前震、Ms6.4级主震以及青海玛多Ms7.4级主震的连续震级估算。结果表明:对于云南漾濞Ms5.6级前震,支持向量机方法在首台触发后1s可估算震级为5.6级,且随着首台触发时间的增加,估算震级一直在实际震级附近波动;对于云南漾濞Ms6.4级主震和青海玛多Ms7.4级主震,随着首台触发时间的增加,支持向量机方法对于大震低估问题得到了有效的改善,且震级估算结果逐渐接近实际震级。同时,这3次地震的震级估算离线模拟表明:引入震源距的支持向量机方法(SVM-M1模型)对于震级估算有更好的稳定性,且在地震预警系统的震级估算中有着潜在的应用前景。
Abstract:
On May 21 and May 22, 2021, destructive earthquakes occurred in Yangbi County, Yunnan Province and Maduo County, Qinghai, respectively. The magnitude of the main shock for the earthquakes are Ms6.4 and Ms7.4, respectively. In this paper, based on the support vector machine (SVM) method in machine learning, the SVM-M model of earthquake early warning magnitude estimation is established with multiple types of characteristic parameters as input. The continuous magnitude estimation of Ms5.6 foreshock, Ms6.4 main earthquake occurred in Yangbi County, Yunnan and Ms7.4 main earthquake occurred in Maduo County, Qinghai are simulated off-line, and the estimated magnitude fluctuates near the catalog magnitude with the increase of the trigger time of the first station. For the Ms6.4 main earthquake occurred in Yangbi County, Yunnan Province and the Ms7.4 main earthquake occurred in Maduo County, Qinghai Province, with the increase of the trigger time of the first station, the SVM method has effectively improved the problem of underestimation of large earthquakes, and the magnitude estimation is gradually close to the catalog magnitude. Meanwhile, the off-line simulation of these three earthquakes shows that the SVM method (SVM-M1 model) with source distance has better stability for magnitude estimation, and has a potential application prospect in the magnitude estimation of earthquake early warning system.

参考文献/References:

[1] 李山有, 金星, 马强, 等. 地震预警系统与智能应急控制系统研究[J]. 世界地震工程, 2004, 20(4):21-26. LI Shanyou, JIN Xing, MA Qiang, et al. Study on earthquake early warning system and intelligent emergency controlling system[J]. World Earthquake Engineering, 2004, 20(4):21-26. (in Chinese)
[2] 马强. 地震预警技术研究及应用[D]. 哈尔滨:中国地震局工程力学研究所. 2008. MA Qiang. Study and application on earthquake early warning[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2008. (in Chinese)
[3] 宋晋东. 高速铁路运行控制用地震动参数及单台地震预警技术研究[D]. 哈尔滨:中国地震局工程力学研究所, 2013. SONG Jindong. Research on seismic ground motion indices for operation control and single station earthquake early warning applied for high-speed railway[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese)
[4] 张红才. 地震预警系统关键技术研究[D]. 哈尔滨:中国地震局工程力学研究所, 2013. ZHANG Hongcai. Study of key technologies in earthquake early warning system[D]. Harbin:Institute of Engineering Mechanics, China Earthquake Administration, 2013. (in Chinese)
[5] 张红才, 金星, 李军, 等. 地震预警震级计算方法研究综述[J]. 地球物理学进展, 2012, 27(2):464-474. ZHANG Hongcai, JIN Xing, LI Jun, et al. Review on magnitude estimation methods applied to earthquake early warning systems[J]. Progress in geophysics, 2012, 27(2):464-474. (in Chinese)
[6] KANAMORI H. Real-time seismology and earthquake damage mitigation[J]. Annual Review of Earth and Planetary Science, 2005, 33:195-214.
[7] B?E M. Earthquake early warning for Istanbul using artificial neural networks[D], (Doctoral dissertation). Germany:University of Karlsruhe, 2006.
[8] HUANG P L, LIN T L, WU Y M. Application of τc*Pd in earthquake early warning[J]. Geophysical Research Letters, 2015, 42(5):1403-1410.
[9] WU Y M, ZHAO L. Magnitude estimation using the first three seconds P-wave amplitude in earthquake early warning[J]. Geophysical Research Letters, 2006, 33(16):L16312 doi:10.1029/2006gl026871.
[10] WU Y M, KANAMORI H. Rapid assessment of damage potential of earthquakes in Taiwan from the beginning of P waves[J]. Bulletin of the Seismological Society of America, 2005, 95(3):1181-1185 doi:10.1785/0120040193.
[11] FESTA G, ZOLLO A, LANCIERI M. Earthquake magnitude estimation from early radiated energy[J]. Geophysical Research Letters, 2008, 35:L22307.
[12] REED J W, KASSAWARA R P. A criterion for determining exceedance of the operating basis earthquake[J]. Nuclear Engineering and Design, 1988, 123(2-3):387-396 doi:10.1016/0029-5493(90)90259-Z.
[13] NAKAMURA Y. A New Concept for the Earthquake Vulnerability Estimation and Its Application to the Early Warning System[M]. Berlin Heidelberg:Springer Berlin Heidelberg, 2003:693-699.
[14] REDDY R, NAIR R R. The efficacy of support vector machines (SVM) in robust determination of earthquake early warning magnitudes in central Japan[J]. Journal of Earth System Science, 2013, 122(5):1423-1434.
[15] 朱景宝,宋晋东,李山有. 基于支持向量机的地震预警震级快速估算研究[J]. 振动与冲击, 2021, 40(7):126-134. ZHU Jingbao, SONG Jindong, LI Shanyou. Rapid magnitude estimation for earthquake early warning based on SVM[J]. Journal of Vibration and Shock, 2021, 40(7):126-134. (in Chinese)
[16] VAPANIK V N. The Nature of Statistical Learning Theory[M]. New York:Springer, New York, NY, 1995.
[17] STEINWART I, HUSH D, SCOVEL C. Learning from dependent observations[J]. Journal of Multivariate Analysis, 2009, 100(1):175-194.
[18] CHERKASSKY V, MA Y. Selection of meta-parameters for support vector regression[J]. Artificial Neural Networks, 2002, 2415:687-693.
[19] TSUBOI C. Determination of the Gutenberg-Richer’s magnitude of earthquakes occurring in and near Japan[J]. Zisin. (J. Seim. Soc. Japan), Ser. II(7), 185-193.
[20] BORMANN P, LIU R F, REN X, et al. Chinese National Network Magnitudes, their relation to NEIC magnitudes, and recommendations for New IASPEI magnitude standards[J]. Bulletin of the Seismological Society of America, 97(1B), 114-127.
[21] ZOLLO A, LANCIERI M, NIELSEN S. Earthquake magnitude estimation from peak amplitudes of very early seismic signals on strong motion records[J]. Geophysical Research Letters, 2006, 33(23), L23312. doi:10.1029/2006GL027795.
[22] 彭朝勇, 杨建思, 薛兵, 等. 基于汶川主震及余震的预警参数与震级相关性研究[J]. 地球物理学报, 2013, 56(10):3404-3415. PENG Chaoyong, YANG Jiansi, XUE Bing, et al. Research on correlation between early-warning parameters and magnitude for the Wenchuan Earthquake and its aftershocks[J]. Chinese Journal of Geophysics, 2013, 56(10):3404-3415. (in Chinese)
[23] ALLEN R V. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America, 1978, 68, 1521-1532. https://doi.org/10.1007/BF02247958.
[24] 马强, 金星, 李山有, 等. 用于地震预警的P波震相到时自动拾取[J]. 地球物理学报, 2013, 56(7):2313-2321. MA Qiang, JIN Xing, LI Shanyou, et al. Automatic P-arrival detection for earthquake early warning[J]. Chinese Journal of Geophysics, 2013, 56(7):2313-2321. (in Chinese)
[25] PENG C Y, YANG J S, ZHENG Y, et al. New τc regression relationship derived from all P-wave time windows for rapid magnitude estimation[J]. Geophysical Research Letters, 2017, 44(4):1724-1731.
[26] 宋晋东, 教聪聪, 李山有, 等. 一种基于地震早期辐射P波能量的高速铁路Ⅰ级地震警报预测方法[J]. 振动与冲击, 2018, 37(19):14-22. SONG Jindong, JIAO Congcong, LI Shanyou, et al. A prediction method for magnitude I earthquake alarm of high-speed railways based on seismic early radiated P-wave energy[J]. Journal of Vibration and Shock, 2018, 37(19):14-22. (in Chinese)
[27] AOI S, KUNUGI T, NAKAMMURA H, et al. Deployment of new strong motion seismographs of K-NET and KiK-net[M]//Earthquake Data in Engineering Seismology. Springer, Dordrecht, 2011:167-186.
[28] ZOLLO A, ORTENSIA A, MARIA L, et al. A threshold-based earthquake early warning using dense accelerometer networks[J]. Geophysical Journal International, 2010, 183(2). doi:10.1111/j.1365-246X.2010.04765.x.

相似文献/References:

[1]孙利,钟红,林皋.高速铁路地震预警系统现状综述[J].世界地震工程,2011,(03):089.
 SUN Li,ZHONG Hong,LIN Gao.An overview of earthquake early warning systems for high speed railways and its application to Beijing-Shanghai high speed railway[J].,2011,(03):089.
[2]张茂雨,林晓,王艳茹,等.基于SEEW-SVM的结构损伤在线识别[J].世界地震工程,2013,(01):070.
 ZHANG Maoyu,LIN Xiao,WANG Yanru,et al.Online identification of structural damage based on SEEW-SVM[J].,2013,(03):070.
[3]李纪恩,李一行,陈平.日本地震预警信息发布法律制度与实践[J].世界地震工程,2013,(03):041.
 LI Jien,LI Yihang,CHEN Ping.Legal system and practice of Japan earthquake early warning information release[J].,2013,(03):041.
[4]佘天莉,高峰,马树林.地震预警仪器研究[J].世界地震工程,2014,(04):129.
 SHE Tianli,GAO Feng,MA Shulin.Study on instruments of earthquake early warning[J].,2014,(03):129.
[5]谭潇,杜鹏.SVM方法在公路涵洞震害预测中的应用[J].世界地震工程,2016,(03):242.
 TAN Xiao,DU Peng.Application of SVM method in the seismic damage prediction of culvert[J].,2016,(03):242.
[6]李纪恩,贾鹏民.地震预警信息发布与传播立法若干问题探析[J].世界地震工程,2017,33(02):001.
 LI Jien,JIA Pengmin.Analysis of the legislative issues about earthquake early warning information release and dissemination[J].,2017,33(03):001.
[7]李鸿杰,曾鹏毅,黄道兴,等.一种基于位移源谱的地震预警快速震级估算方法及影响因素研究[J].世界地震工程,2017,33(04):187.
 LI Hongjie,ZENG Pengyi,HUANG Daoxing,et al.Evaluation for influence factors of a rapidly estimating earthquake magnitude algorithm for EEW: displacement source spectrum method[J].,2017,33(03):187.
[8]李鸿杰,张建经,陈逸民,等.基于2014年云南地区地震的地震预警参数与快速震级估算研究[J].世界地震工程,2018,34(02):123.
 LI Hongjie,ZHANG Jianjing,CHEN Yimin,et al.Research on earthquake early warning parameters and rapid magnitude estimation based events in Yunnan region in 2014[J].,2018,34(03):123.
[9]卢建旗,李山有.地震预警断层参数实时识别方法(FinDer)详解及其性能初步评价[J].世界地震工程,2021,(01):152.
 LU Jianqi,LI Shanyou.Detailed analysis and preliminary performance evaluation of the FinDer:A real-time finite fault rupture detector for earthquake early warning[J].,2021,(03):152.
[10]汪源,宋晋东,李山有.2021年2月13日日本福岛Mj7.3级地震潜在破坏区快速估计[J].世界地震工程,2021,(02):090.
 WANG Yuan,SONG Jindong,LI Shanyou.Rapid estimation of potential damage zone for the Mj7.3 Fukushima earthquake in Japan on February 13, 2021[J].,2021,(03):090.
[11]朱景宝,宋晋东,李山有.基于支持向量机的2021年2月13日日本福岛近海Mj7.3级地震震级估算[J].世界地震工程,2021,(02):074.
 ZHU Jingbao,SONG Jindong,LI Shanyou.Magnitude estimation for the February 13, 2021 Mj7.3 earthquake near the coast of Fukushima Japan based on support vector machine[J].,2021,(03):074.

备注/Memo

备注/Memo:
收稿日期:2021-06-04;改回日期:2021-06-18。
基金项目:国家重点研发计划课题(2018YFC1504003)及其省级资助;国家自然科学基金项目(51408564)
作者简介:朱景宝(1996-),男,博士研究生,主要从事机器学习地震预警研究.E-mail:1178750132@qq.com
通讯作者:宋晋东(1980-),男,博士,副研究员,硕士生导师,主要从事地震预警研究.E-mail:jdsong@iem.ac.cn
更新日期/Last Update: 1900-01-01