[1]程庆乐,郭思怡,孙楚津,等.2022年日本福岛7.4级地震震害分析与对比[J].世界地震工程,2023,39(01):001-8.[doi:10.19994/j.cnki.WEE.2023.0001]
 CHENG Qingle,GUO Siyi,SUN Chujin,et al.Post-event seismic damage assessment of 2022 M7.4 Japan Fukushima earthquake and comparisons with field investigation[J].,2023,39(01):001-8.[doi:10.19994/j.cnki.WEE.2023.0001]
点击复制

2022年日本福岛7.4级地震震害分析与对比
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
001-8
栏目:
专栏:2022年破坏性地震
出版日期:
2023-02-15

文章信息/Info

Title:
Post-event seismic damage assessment of 2022 M7.4 Japan Fukushima earthquake and comparisons with field investigation
文章编号:
1007-6069(2023)01-0001-08
作者:
程庆乐1郭思怡1孙楚津2党纪3陆新征2
1.北京建筑大学土木与交通工程学院,北京100044;2.清华大学土木工程系,土木工程安全与耐久教育部重点试验室,北京100084;3.埼玉大学理工学研究科环境社会设计学科,埼玉3388570,日本
Author(s):
CHENG Qingle1 GUO Siyi1 SUN Chujin2 DANG Ji3 LU Xinzheng2
1. School of Civil and Transportation Engineering, Beijing University of Engineering and Architecture, Beijing 100044, China; 2. Key Laboratory of Civil Engineering Safety and Durability of China Education Ministry, Department of Civil Engineering, Tsinghua University, Beijing 100084, China; 3. Department of Civil and Environmental Engineering, Saitama University, Saitama 3388570, Japan
关键词:
强震动 地震破坏力 2022日本福岛7.4级地震 城市抗震弹塑性分析 RED-ACT
Keywords:
strong motion records earthquake destructive power M7.4 Japan Fukushima earthquake city-scale nonlinear time history analysis RED-ACT
分类号:
P315
DOI:
10.19994/j.cnki.WEE.2023.0001
文献标志码:
A
摘要:
2022年3月16日在日本福岛县东部海域发生7.4级地震,本文基于近实时震害评估系统RED-ACT对此次地震进行了快速评估,包括强震动记录分析、区域地震破坏力震害评估结果和典型桥梁破坏,并结合实际震害对比了该系统评估结果以及其他主要震害快速评估系统的分析结果,结果表明:(1)此次地震造成的地面运动强度较大,多数台站记录PGA较2021年福岛7.3级地震更强,反应谱在0.5~1.3s区间呈现远高于2021年福岛地震的趋势。(2)RED-ACT的震害评估结果相较于日本NIED-CRS系统和美国USGS-PAGER系统与实际震害更为接近,在强震动记录较为密集的地区,开展基于强震动时程和建筑非线性分析的震害评估能够得到更为准确的震害评估结果。(3)此次地震对白石市附近桥梁造成了一定的破坏,桥梁破坏附近处的强震动会对典型桥梁结构造成一定程度的破坏。
Abstract:
On March 16, 2022, an earthquake with a magnitude of 7.4 occurred in the eastern coast of Fukushima Prefecture, Japan. Based on the near-real-time regional seismic damage assessment system, namely RED-ACT, we conducted a prompt assessment of the earthquake, including the analysis of strong motion records, the seismic destructive power on a regional scale, and performance assessment of typical bridges subjected the typical ground motion of this earthquake. And the results are compared with other seismic damage assessment systems and filed investigation. The results show that:(1)The ground motion caused by this earthquake is relatively strong, and the peak ground acceleration(PGA)recorded by most stations is stronger than that of the 2021 Fukushima M7.3 earthquake, and the response spectrum in the period of 0.5-1.3 for some stations is much higher than that of the 2021 Fukushima earthquake;(2)Compared with NIED-CRS of Japan and USGS-PAGER of USA, the results of RED-ACT are closer to the actual earthquake damage. In areas with densely-distributed strong motion records, more accurate assessment can be obtained using seismic damage assessment method based on the strong ground motion records and nonlinear time-history analysis of buildings.(3)The earthquake causes certain damage to bridges near Baishi city, and typical bridge models will suffer some damage using the strong ground motions near the damaged bridge as input.

参考文献/References:

[1] 気象庁. 2022. Earthquake and Seismic Intensity Information. https://www.jma.go.jp/bosai/map.html#7/37.076/139.263/&elem=int&contents=earthquake_map&lang=en
[2] 程庆乐. 基于实测地震动的近实时震损评价方法研究[D]. 北京: 清华大学, 2021.
CHENG Qingle. Near-Real-Time Seismic Damage Assessment Method Using Recorded Ground Motion[D]. Beijing: Tsinghua University, 2021.(in Chinese)
[3] LU Xinzheng, CHENG Qingle, XU Zhen, et al. Real-time city-scale time-history analysis and its application in resilience-oriented earthquake emergency responses[J]. Applied Sciences, 2019, 9(17): 3497.
[4] 陆新征, 田源, 许镇, 等. 一种新型城市地震灾害模拟方法: 城市抗震弹塑性分析方法[J]. 科学通报, 2020, 65(11): 1055 — 1062.
LU Xinzheng, TIAN Yuan, XU Zhen, et al. A new urban earthquake disaster simulation method: city-scale nonlinear time-history analysis[J]. Chinese Science Bulletin, 2020, 65(11): 1055 — 1062.(in Chinese)
[5] 陆新征, 田源, 许镇. 城市抗震弹塑性分析[M]. 北京: 清华大学出版社, 2021.
LU Xinzheng, TIAN Yuan, XU Zhen. Elastic-Plastic Analysis of Urban Earthquake Resistance[M]. Beijing: Tsinghua University Press, 2021.(in Chinese)
[6] 孙楚津, 党纪, 程庆乐, 等. 基于城市抗震弹塑性分析和实测地面运动的日本震损速报系统RED-ACT-JP[C]// 第十三届中日建筑结构技术交流会论文集. 兰州, 2019.
SUN Chujin, DANG Ji, CHENG Qingle, et al. A rapid reporting system for japan earthquake damage(RED-ACT-JP)based on the city-scale nonlinear time-history analysis and actual ground motion records[C]// The 13th China-Japan Building Technology Conference. Lanzhou, 2019.(in Chinese)
[7] 陆新征, 顾栋炼, 林旭川, 等. 2017.08.08四川九寨沟7.0级地震震中附近地面运动破坏力分析[J]. 工程建设标准化, 2017(8): 68 — 73.
LU Xinzheng, GU Donglian, LIN Xuchuan, et al. Analysis of the destructive power of ground motion near the epicenter of the 2017.08.08 Jiuzhaigou earthquake in Sichuan Province[J]. Standardization of Engineering Construction, 2017(8): 68 — 73.(in Chinese)
[8] 许镇, 赵鹏举, 郑哲, 等. 中国宜宾、日本山形、美国加州Ridgecrest地震破坏力分析与对比[J]. 工程力学, 2019, 36(11): 195 — 202.
XU Zhen, ZHAO Pengju, ZHENG Zhe, et al. Analysis and comparison of seismic damage in China Yibin, Japan Yamagata and U.S. California Ridgecrest earthquakes[J]. Engineering Mechanics, 2019, 36(11): 195 — 202.(in Chinese)
[9] 程庆乐, 郑哲, 赵鹏举, 等. 河北唐山4.5级地震震中附近地面运动破坏力分析[J]. 华北地震科学, 2020, 38(2): 78 — 84.
CHENG Qingle, ZHENG Zhe, ZHAO Pengju, et al. Seismic damage assessment of Hebei Tangshan 4.5 earthquake[J]. North China Earthquake Sciences, 2020, 38(2): 78 — 84.(in Chinese)
[10] 费一凡, 陈星雨, 程庆乐, 等. 日本福岛7.3级地震区域震害分析与对比[J]. 世界地震工程, 2021, 37(2): 31 — 37.
FEI Yifan, CHEN Xingyu, CHENG Qingle, et al. Analysis and comparison of regional seismic damage in M7.3 Japan Fukushima earthquake[J]. World Earthquake Engineering, 2021, 37(2): 31 — 37.(in Chinese)
[11] 消防庁災害対策本部. 2022. 福島県沖を震源とする地震による被害及び消防機関等の対応状況(第14報). https://www.fdma.go.jp/disaster/info/items/20220316fukushimakenoki14.pdf
[12] 井上和真, 植村佳大. 2022. 2022年3月16日福島県沖で発生した地震の緊急被害調査の報告(第二報)2022.3.19. https://committees.jsce.or.jp/eec205/system/files/20220319_%E7%A6%8F%E5%B3%B6%E6%B2%96%E3%81%AE%E5%9C%B0%E9%9C%87%E8%A2%AB%E5%AE%B3%E8%AA%BF%E6%9F%BB%E5%A0%B1%E5%91%8A%28%E4%BA%95%E4%B8%8A_%E6%A4%8D%E6%9D%91%EF%BC%89_%E7%AC%AC%E4%BA%8C%E5%A0%B1.pdf
[13] 柴山明寛,森口周二,大野晋,佐藤健. 2022. 令和4年3月16日23時36分頃福島県沖の地震現地調査報告. https://irides.tohoku.ac.jp/media/files/earthquake/eq/20220316_fukushima_eq/20220316fks-eq_shibayama.pdf
[14] 防災科学技術研究所. 福島県沖を震源とする地震. https://xview.bosai.go.jp/view/index.html?appid=4fe6f87bd4154d2685ec810 d887ddfc6
[15] USGS. M7.3-57 km ENE of Namie, Japan. https://earthquake.usgs.gov/earthquakes/eventpage/us6000h519/executive
[16] 人民网. 2022. 东北新干线遭地震破坏严重 近千处受损规模仅次于东日本大地震. http://japan.people.com.cn/n1/2022/0322/c35421-32381273.html
[17] 党紀, 王欣. 2022.2022年3月16日福島沖地震被害調査報告橋梁の地震損傷(速報第2報). https://committees.jsce.or.jp/eec205/system/files/2022%E5%B9%B43%E6%9C%8816%E6%97%A5%E7%A6%8F%E5%B3%B6%E7%9C%8C%E6%B2%96%E5%9C%B0%E9%9C%87%E8%A2%AB%E5%AE%B3%E8%AA%BF%E6%9F%BB%E9%80%9F%E5%A0%B12%20%E5%85%9A.pdf
[18] 黄才贵. 非延性梁桥倒塌地震易损性分析[D]. 福州:福州大学,2020.
HUANG Caigui. Seismic Collapse Fragility Assessment of Non-ductile Reinforced Concrete Bridges[D].Fuzhou: Fuzhou University, 2020.(in Chinese)
[19] 李晓芳. 基于材料性能退化的近海桥梁地震风险概率评估[D]. 福州:福州大学,2018.
LI Xiaofang. Seismic Risk Probability Assessment of Offshore Bridge Based on the Material Performance Degradation[D].Fuzhou: Fuzhou University, 2018.(in Chinese)

相似文献/References:

[1]卞真付,郭巍,吴强,等.天津数字强震动台网系统设计与实现[J].世界地震工程,2009,(02):151.
 BIAN Zhenfu,GUO Wei,WU Qiang,et al.The design and implementation of the system of Tianjin digital strong motion metwork[J].,2009,(01):151.
[2]吴双兰,野津厚,長坂陽介.2021年日本福岛县冲地震的震源破裂过程分析基于采用经验格林函数方法的波形反演[J].世界地震工程,2021,(02):001.
 WU Shuanglan,NOZU Atsushi,NAGASAKA Yosuke.Rupture process of the 2021 Fukushima-ken Oki earthquake estimated from waveform inversion with empirical Green’s functions[J].,2021,(01):001.

备注/Memo

备注/Memo:
收稿日期:2022-04-18; 修回日期:2022-07-27
基金项目:北京市自然科学基金青年项目(8224083), 腾讯基金会科学探索奖
作者简介:程庆乐(1994 —),男,博士,主要从事工程抗震研究. E-mail: chengqingle@bucea.edu.cn
更新日期/Last Update: 1900-01-01