[1]徐龙军,彭龙强,谢礼立.地震断层形态研究综述[J].世界地震工程,2023,39(01):028-37.[doi:10.19994/j.cnki.WEE.2023.0004]
 XU Longjun,PENG Longqiang,XIE Lili.Review of rupture morphology of seismic faults[J].,2023,39(01):028-37.[doi:10.19994/j.cnki.WEE.2023.0004]
点击复制

地震断层形态研究综述
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
028-37
栏目:
常规论文
出版日期:
2023-02-15

文章信息/Info

Title:
Review of rupture morphology of seismic faults
文章编号:
1007-6069(2023)01-0028-10
作者:
徐龙军1彭龙强2谢礼立12
1.江汉大学精细爆破国家重点实验室,湖北武汉430056;2.中国地震局工程力学研究所,黑龙江哈尔滨150080
Author(s):
XU Longjun1 PENG Longqiang2 XIE Lili12
1.State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China; )/(2.Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China
关键词:
地震断层 空间展布 断层形态 场地条件
Keywords:
earthquake fault spatial distribution fault morphology site condition
分类号:
P315.2
DOI:
10.19994/j.cnki.WEE.2023.0004
文献标志码:
A
摘要:
随着我国工程建设事业的不断发展,一大批土木工程基础设施正不断向地下深部、深海和中西部地区延伸转移,如地铁工程、跨海跨湾工程铁路和铁路工程(如川藏铁路)等都具有里程长、规模大的显著特点,在我国特殊的地震地质构造背景下,会不可避免地遇到地表或地下深部地震断层的作用。断层的作用方式与断层破裂的形态关系密切,研究不同场地的地表断层形态对工程结构抗断层错断设计有重要意义。本文归纳了不同场地条件下地震地表断层的形态和断层的空间展布特征,总结了地震断层形态的研究现状,分析了影响地震断层形态的因素,探讨了当前研究工作的不足与今后的研究方向,以期能为相关研究工作提供参考。
Abstract:
With the continuous development of engineering construction in China, a large number of civil engineering infrastructure is constantly extending to the deep underground, deep sea and central and western regions, such as subway engineering, cross-sea/bay engineering, railway engineering(such as Sichuan-Tibet railway), etc., all have the remarkable characteristics of long distance and large scale. Under the background of special seismic geological structure in China, it will be inevitable to encounter surface or deep underground seismic fault action. The action mode of fault is closely related to the morphology of fault rupture. Hence, it is of great significance to study the surface fault morphology of different sites for the design of anti-fault design of engineering structures. This paper summarizes the morphology and spatial distribution characteristics of seismic surface faults under different site conditions, summarizes the research status of seismic fault morphology, analyzes the factors that affect the morphology of seismic fault, and discusses the problems of current research work and future research directions, hoping to provide reference for related research work.

参考文献/References:

[1] 胡聿贤. 地震工程学[M]. 第二版. 北京: 地震出版社, 2006:1 — 124.
HU Yuxian. Earthquake Engineering[M]. The second edition. Beijing: Seismological Press, 2006:1 — 124.(in Chinese)
[2] 谢礼立, 徐龙军, 陶晓燕, 等. 跨断层土木工程研究与实验装置研发现状[J]. 工程力学, 2021, 38(4): 20 — 29.
XIE Lili, XU Longjun, TAO Xiaoyan, et al. Research status of civil engineering structures across faults and the development of experimental devices for fault simulation[J]. Engineering Mechanics, 2021, 38(4): 20 — 29.(in Chinese)
[3] SEVERN R T. The development of shaking tables-a historical note[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(2): 195 — 213.
[4] ROBET Reitherman. Historic developements in the evolution of earthquake engineering:adapted from the 1998 curee calendar[C]∥Consortium of Universities for Research in Earthquake Engineering. Richmond:Curee, 1997: 1 — 14.
[5] GB 50011 — 2016建筑抗震设计规范[S]. 北京: 中国建筑工业出版社, 2016.
GB 50011 — 2016 Code for Seismic Design of Buildings[S].Beijing: China Architecture & Building Press, 2016.(in Chinese)
[6] 中国地震局. 活动断层避让(征求意见稿)[S].2019.
China Earthquake Administration. Active fault avoidance(Draft for Comments)[S]. 2019.(in Chinese)
[7] 谢礼立. 强震观测与分析原理[M]. 北京: 地震出版社, 1982.
XIE Lili. Principle of Strong Earthquake Observation and Analysis[M]. Beijing: Seismological Press, 1982: 1 — 62.(in Chinese)
[8] 崔杰. “强震及地震工程震害资料基础数据库”项目成果介绍[J]. 国际地震动态, 2006, 36(9): 13 — 19.
CUI Jie. Introduction of the program “fundamental database for strong earthquakes and seismic disaster materials for seismic engineering”[J]. Recent Developments in World Seismology, 2006, 36(9): 13 — 19.(in Chinese)
[9] 薄景山, 李琪, 齐文浩, 等. 场地条件对地震动和震害影响的研究进展与建议[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1295 — 1305.
BO Jingshan, LI Qi, QI Wenhao, et al. Research progress and discussion of site condition effect on ground motion and earthquake damages[J]. Journal of Jilin University(Earth Science Edition), 2021, 51(5): 1295 — 1305.(in Chinese)
[10] University of Colorado Boulder. GEOL 1170: Our Deadly Planet[N].2021.Available from: https:∥www.colorado.edu/geologicalsciences/geol-1170-our-deadly-planet.
[11] JACOBSON D. The most complex fault rupture ever[N].2017 Available from: http:∥temblor.net/earthquake-insights/the-most-complex-fault-rupture-ever-2771/
[12] SILFRA. The Clearest Water On Earth, Between Tectonic Plates[N]. 2018.Available from: https:∥www.sohu.com/a/165853535_568256.
[13] LEE C T, Kelson K I, Kang K H. Hangingwall deformation and its effect to buildings and structures as learned from the Chelungpu faulting in the 1999 Chi-Chi, Taiwan earthquake[G]∥ Loh C H, Kang K H(eds).International Workshop on Annual Commemoration of ChiChi Earthquake. Taiwan: National Center for Research on Earthquake Engineering, 2000, 93 — 104.
[14] LEE Y, Wu W, Sugiyama Y, Azuma T, et al. Displacements and segmentation of the surface fault, 1999 Chi-Chi, Taiwan, earthquake.EOS, Transactions American Geophysical Union, 2000, 81(48):882.
[15] MA K F, LEE C T, TSAI Y B, et al. The Chi-Chi, Taiwan earthquake: large surface displacements on an inland thrust fault[J]. EOS, Transactions American Geophysical Union, 1999, 80(50): 605 — 611.
[16] 周庆, 徐锡伟, 于贵华, 等. 汶川8.0级地震地表破裂带宽度调查[J]. 地震地质, 2008, 30(3): 778 — 788.
ZHOU Qing, XU Xiwei, YU Guihua, et al. Investigation on widths of surface rupture zones of the m 8.0 Wenchuan earthquake, Sichuan Province, China[J]. Seismology and Geology, 2008, 30(3): 778 — 788.(in Chinese)
[17] ASANO K, IWATA T. Source rupture processes of the foreshock and mainshock in the 2016 Kumamoto earthquake sequence estimated from the kinematic waveform inversion of strong motion data[J]. Earth, Planets and Space, 2016, 68(1): 147.
[18] HIMEMATSU Y, FURUYA M. Fault source model for the 2016 Kumamoto earthquake sequence based on ALOS-2/PALSAR-2 pixel-offset data: evidence for dynamic slip partitioning[J].Earth, Planets and Space, 2016, 68(1): 1 — 10.
[19] KUBO H, SUZUKI W, AOI S, et al. Source rupture processes of the 2016 Kumamoto, Japan, earthquakes estimated from strong-motion waveforms[J]. Earth, Planets and Space, 2016, 68(161):1 — 13.
[20] KELSON K I. Representative styles of deformation along the chelungpu fault from the 1999 Chi-Chi(Taiwan)earthquake: geomorphic characteristics and responses of man-made structures[J]. Bulletin of the Seismological Society of America, 2004, 91(5): 930 — 952.
[21] DONG J J, WANG C D, LEE C T, et al. The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake: a case study in Fengyuan City[J]. Engineering Geology, 2004, 71(1-2): 157 — 179.
[22] SANFORD A R. Analytical and experimental study of simple geologic structures[J]. Geological Society of America Bulletin, 1959, 70(1): 19 — 52.
[23] EMMONS R. Strike-slip rupture patterns in sand models[J]. Tectonophysics, 1969, 7(1): 71 — 87.
[24] 刘学增, 滨田政则. 活断层破坏在土体中传播的试验研究[J]. 岩土工程学报, 2004, 26(3): 425 — 427.
LIU Xuezeng, BIN Tianzhengze. Experiments on rupture propagation of active faults in soil[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(3): 425 — 427.(in Chinese)
[25] JOHANSSON J, KONAGAI K. Fault induced permanent ground deformations-simulations and experimental verification[C]/13th World Conference on Earthquake Engineering. Vancouver: Geology, 2002:1 — 15.
[26] JOHANSSON J, KONAGAI K. Fault induced permanent ground deformations—an experimental comparison of wet and dry soil and implications for buried structures[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(1): 45 — 53.
[27] LEE J W, HAMADA M. An experimental study on earthquake fault rupture propagation through a sandy soil deposit[J]. Structural Engineering, 2005, 22(1): 1 — 13.
[28] MOOSAVI S M, JAFARI M, KAMALIAN M, et al. Experimental investigation of reverse fault rupture-rigid shallow foundation interaction[J]. International Journal of Civil Engineering, 2010, 8: 85 — 98.
[29] AHMADI M, MOOSAVI M, JAFARI M K. Water content effect on the fault rupture propagation through wet soil-using direct shear tests[M]∥Advances in Laboratory Testing and Modelling of Soils and Shales(ATMSS). Cham: Springer International Publishing, 2017: 131 — 138.
[30] AHMADI M, MOOSAVI M, JAFARI M K. Experimental investigation of reverse fault rupture propagation through cohesive granular soils[J]. Geomechanics for Energy and the Environment, 2018, 14: 61 — 65.
[31] AHMADI M, MOOSAVI M, JAFARI M K. Experimental investigation of reverse fault rupture propagation through wet granular soil[J]. Engineering Geology, 2018, 239: 229 — 240.
[32] 石吉森. 对断层错动引发上覆土层和隧道破坏的试验与数值研究[D]. 杭州: 浙江大学, 2017.
SHI Jisen. Model Tests and Numerical Study on the Destructions of Overlaying Soil and Tunnels by Faulting[D]. Hangzhou: Zhejiang University, 2017.(in Chinese)
[33] 郭明珠, 邹玉, 孙海龙. 振动台模型试验相似理论分析[J]. 沈阳建筑大学学报(自然科学版), 2021, 37(4): 594 — 601.
GUO Mingzhu, ZOU Yu, SUN Hailong. Analysis of similarity theory of shaking table model test[J]. Journal of Shenyang Jianzhu University(Natural Science), 2021, 37(4): 594 — 601.(in Chinese)
[34] ROTH W H, SCOTT R F, AUSTIN I. Centrifuge modeling of fault propagation through alluvial soils[J]. Geophysical Research Letters, 1981, 8(6): 561 — 564.
[35] ANASTASOPOULOS I, GAZETAS G, BRANSBY M F, et al. Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(8): 943 — 958.
[36] BRANSBY M F, DAVIES M C R, NAHAS A E, et al. Centrifuge modelling of reverse fault–foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6(4): 607 — 628.
[37] BRANSBY M F, DAVIES M C R, NAHAS A E. Centrifuge modelling of normal fault–foundation interaction[J]. Bulletin of Earthquake Engineering, 2008, 6(4): 585 — 605.
[38] TALI N, LASHKARIPOUR G R, HAFEZI MOGHADAS N, et al. Centrifuge modeling of reverse fault rupture propagation through single-layered and stratified soil[J]. Engineering Geology, 2019, 249: 273 — 289.
[39] 郭恩栋, 邵广彪, 薄景山, 等. 覆盖土层场地地震断裂反应分析方法[J]. 地震工程与工程振动, 2002, 22(5): 122 — 126.
GUO Endong, SHAO Guangbiao, BO Jingshan, et al. A method for earthquake rupture analysis of overlying soil site[J]. Earthquake Engineering and Engineering Dynamics, 2002, 22(5): 122 — 126.(in Chinese)
[40] FACCIOLI E, ANASTASOPOULOS I, GAZETAS G, et al. Fault rupture-foundation interaction: selected case histories[J]. Bulletin of Earthquake Engineering, 2008, 6(4): 557 — 583.
[41] LOUKIDIS D, BOUCKOVALAS G D, PAPADIMITRIOU A G. Analysis of fault rupture propagation through uniform soil cover[J]. Soil Dynamics and Earthquake Engineering, 2009, 29(11-12): 1389 — 1404.
[42] 李秀菊, 李鸿晶. 断层错动引起的上覆土体破裂演化规律研究[J]. 地震学报, 2012, 34(6): 858 — 864, 880.
LI Xiuju, LI Hongjing. Analysis of rupture propagation in overlying soil due to fault movement[J]. Acta Seismologica Sinica, 2012, 34(6): 858 — 864, 880.(in Chinese)
[43] 赵颖, 郭恩栋, 王琼, 等. 走滑断层地震地表断裂位错估计方法研究[J]. 岩土力学, 2013, 34(5): 1403 — 1408.
ZHAO Ying, GUO Endong, WANG Qiong, et al. Estimate method of dislocation to seismic surface rupture under strike-slip fault[J]. Rock and Soil Mechanics, 2013, 34(5): 1403 — 1408.(in Chinese)
[44] OETTLE N K, BRAY J D, DREGER D S. Dynamic effects of surface fault rupture interaction with structures[J]. Soil Dynamics and Earthquake Engineering, 2015, 72: 37 — 47.
[45] OETTLE N K, BRAY J D. Fault rupture propagation through previously ruptured soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1637 — 1647.
[46] ZANJANI M M, SOROUSH A. Numerical modeling of reverse fault rupture propagation through clayey embankments[J]. International Journal of Civil Engineering, 2013, 11(2): 122 — 132.
[47] ZANJANI M M, SOROUSH A. Numerical modeling of fault rupture propagation through two-layered sands[J]. Scientia Iranica, 2014, 21(1): 19 — 29.
[48] MORTAZAVI ZANJANI M, SOROUSH A. Numerical modelling of fault rupture propagation through layered sands[J]. European Journal of Environmental and Civil Engineering, 2017, 23(9): 1139 — 1155.
[49] LOZOS J C, OGLESBY D D, BRUNE J N, et al. Rupture propagation and ground motion of strike‐slip stepovers with intermediate fault segments[J]. Bulletin of the Seismological Society of America, 2015, 105(1): 387 — 399.
[50] CHATZIDAKIS D, TSOMPANAKIS Y, PSARROPOULOS P N. Numerical investigation of secondary-fault rupture propagation through sandy deposits[J]. Engineering Geology, 2021, 292: 106258.
[51] SCOTT R F, SCHOUSTRA J J. Nuclear power plant siting on deep alluvium[J]. Journal of the Geotechnical Engineering Division, 1974, 100(4): 449 — 459.
[52] GARCIA F E, BRAY J D. Distinct element simulations of earthquake fault rupture through materials of varying density[J]. Soils and Foundations, 2018, 58(4): 986 — 1000.
[53] GARCIA F E, BRAY J D. Discrete-element analysis of influence of granular soil density on earthquake surface fault rupture interaction with rigid foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(11).
[54] GARCIA F E, BRAY J D. Discrete element analysis of earthquake surface fault rupture through layered media[J]. Soil Dynamics and Earthquake Engineering, 2022, 152: 107021.
[55] HUANG B, YEH Y. The fault ruptures of the 1976 Tangshan earthquake sequence inferred from coseismic crustal deformation[J]. Bulletin of the Seismological Society of America, 1997, 87: 1046 — 1057.
[56] 杜晨晓, 谢富仁, 张扬, 等. 1976年MS7.8唐山地震断层动态破裂及近断层强地面运动特征[J]. 地球物理学报, 2010, 53(2): 290 — 304.
DU Chenxiao, XIE Furen, ZHANG Yang, et al. 3D modeling of dynamic fault rupture and strong ground motion of the 1976 Ms 7.8 Tangshan earthquake[J]. Chinese Journal of Geophysics, 2010, 53(2): 290 — 304.(in Chinese)
[57] 赵雷, 李小军, 霍达. 断层错动引发基岩上覆土层破裂问题[J]. 北京工业大学学报, 2007, 33(1): 20 — 25.
ZHAO Lei, LI Xiaojun, HUO Da. Problems of rupturing process of overlaying soil due to fault dislocation of bedrock[J]. Journal of Beijing University of Technology, 2007, 33(1): 20 — 25.(in Chinese)
[58] 徐泽龙. 逆断层错动引起上覆土层破裂的模型试验研究[D]. 杭州: 浙江大学, 2015.
XU Zelong. Experimental Study on the Fault Rupture of Overlying Soil Induced by Reverse Fault Slip[D]. Hangzhou: Zhejiang University, 2015.(in Chinese)
[59] CJJ166-2011城市桥梁抗震设计规范[S]. 北京: 中国建筑工业出版社, 2011.
CJJ166-2011 Code for Seismic Design of Urban Bridges[S].Beijing: China Architecture & Architecture Press, 2011.(in Chinese)
[60] GB50021 — 2001岩土工程勘察规范[S]. 北京: 中国建筑工业出版社, 2009.
GB50021 — 2001 Code for Geotechnical Investigation[S].Beijing: China Architecture & Building Press, 2009.(in Chinese)
[61] ANASTASOPOULOS I, GEROLYMOS N, DROSOS V, et al. Behaviour of deep immersed tunnel under combined normal fault rupture deformation and subsequent seismic shaking[J]. Bulletin of Earthquake Engineering, 2008, 6(2): 213 — 239.
[62] 刘学增, 林亮伦. 75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2011, 30(12): 2523 — 2530.
LIU Xuezeng, LIN Lianglun. Research on model experiment of effect of thrust fault with 75°dip angle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2523 — 2530.(in Chinese)
[63] 刘学增, 林亮伦, 桑运龙. 逆断层粘滑错动对公路隧道的影响[J]. 同济大学学报(自然科学版), 2012, 40(7): 1008 — 1014.
LIU Xuezeng, LIN Lianglun, SANG Yunlong. Effect of thrust fault stick-slip rupture on road tunnel[J]. Journal of Tongji University(Natural Science), 2012, 40(7): 1008 — 1014.(in Chinese)
[64] 刘学增, 林亮伦. 75°倾角逆断层黏滑错动对公路隧道影响的模型试验研究[J]. 岩石力学与工程学报, 2011, 30(12): 2523 — 2530.
LIU Xuezeng, LIN Lianglun. Research on model experiment of effect of thrust fault with 75°dip angle stick-slip dislocation on highway tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(12): 2523 — 2530.(in Chinese)
[65] 赵颖, 郭恩栋, 刘智, 等. 走滑断层位错作用下城市地铁隧道损伤分析[J]. 岩土力学, 2014, 35(S2): 467 — 473.
ZHAO Ying, GUO Endong, LIU Zhi, et al. Damage analysis of urban metro tunnel under strike-slip fault[J]. Rock and Soil Mechanics, 2014, 35(S2): 467 — 473.(in Chinese)
[66] 颉永斌, 董建华. 断层破碎带内隧道纵向受荷特征和变形分析[J]. 中国公路学报, 2021, 34(11): 211 — 224.
XIE Yongbin, DONG Jianhua. Analysis of longitudinal deformation and stress characteristics of tunnel crossing fault fracture zone[J]. China Journal of Highway and Transport, 2021, 34(11): 211 — 224.(in Chinese)
[67] MORTAZAVI ZANJANI M, SOROUSH A, KHOSHINI M. Two-dimensional numerical modeling of fault rupture propagation through earth dams under steady state seepage[J]. Soil Dynamics and Earthquake Engineering, 2016, 88: 60 — 71.

相似文献/References:

[1]余建星,袁祺伟,余杨,等.地震断层对管道压溃压力的影响[J].世界地震工程,2020,(02):180.
 YU Jianxing,YUAN Qiwei,YU Yang,et al.Effect of earthquake fault on the collapse pressure of pipeline[J].,2020,(01):180.

备注/Memo

备注/Memo:
收稿日期:2022-08-08; 修回日期:2022-09-04
基金项目:国家自然科学基金重点项目(U2139207)
作者简介:徐龙军(1976 —),男,教授,博士生导师,主要从事防灾减灾工程研究. E-mail: xulj@jhun.edu.cn
通讯作者:彭龙强(1997 —),男,硕士研究生,主要从事地震工程研究. E-mail: 974843572@qq.com
更新日期/Last Update: 1900-01-01