[1]杨耀鑫,杨永强,杨游,等.基于神经网络的结构震后快速损伤评估[J].世界地震工程,2023,39(01):049-58.[doi:10.19994/j.cnki.WEE.2023.0006]
 YANG Yaoxin,YANG Yongqiang,YANG You,et al.Rapid assessment of structural damage after earthquake based on neural network[J].,2023,39(01):049-58.[doi:10.19994/j.cnki.WEE.2023.0006]
点击复制

基于神经网络的结构震后快速损伤评估
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
049-58
栏目:
常规论文
出版日期:
2023-02-15

文章信息/Info

Title:
Rapid assessment of structural damage after earthquake based on neural network
文章编号:
1007-6069(2023)01-0049-10
作者:
杨耀鑫12杨永强12杨游3公茂盛12
1.中国地震局工程力学研究所地震工程与工程振动重点实验室,黑龙江哈尔滨150080;2.地震灾害防治应急管理部重点实验室,黑龙江哈尔滨150080;3.中国市政工程中南设计研究总院有限公司,湖北武汉430010
Author(s):
YANG Yaoxin12YANG Yongqiang12 YANG You3 GONG Maosheng12
1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration,Harbin 150080, China; 2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China; 3. Central and Southern China Municipal Engineering Design and Research Institute Co., Ltd., Wuhan 430010, China
关键词:
结构地震响应 钢筋混凝土框架结构 神经网络 结构损伤 快速评估
Keywords:
structural seismic response RC frame structures neural network structural damage rapid assessment
分类号:
TU375
DOI:
10.19994/j.cnki.WEE.2023.0006
文献标志码:
A
摘要:
为了利用结构地震响应观测数据在震后对结构进行损伤快速评估,本文提出了基于BP传播神经网络多参数预测震后结构损伤程度的方法。本文设计了9个不同设防烈度和层数的钢筋混凝土框架结构,利用OpenSees有限元软件进行了非线性时程分析,并用损伤指数量化了结构损伤程度。利用有限元模拟结果,创建了神经网络的数据集,训练神经网络建立了结构参数与结构损伤指数之间的映射,对比了不同参数组合预测结构损伤水平的能力,提出了最优参数组合。结果表明:此方法预测结构损伤指数准确度高,耗时短,可为建筑工程震后损伤快速评估提供支撑。
Abstract:
In order to use the structural seismic response observation data for rapid damage assessment of structures, this paper proposes a method based on BP neural network for multi-parameter prediction of the post-earthquake structural damage degree. In this paper, nine reinforced concrete frame structures with different fortification intensities and number of stories were designed, and nonlinear dynamic time history analysis was performed by OpenSees, and the damage index was used to quantify the degree of structural damage. Using the finite element simulation results, a dataset of neural network was created, and the mapping between structural parameters and structural damage indices was established by training the neural network, comparing the ability of different parameter combinations to predict the structural damage level, and proposing the optimal parameter combination. The results show that this method is highly accurate and time-consuming, and can provide support for rapid assessment of post-earthquake damage in construction projects.

参考文献/References:

[1] DE LAUTOUR O R, OMENZETTER P. Prediction of seismic-induced structural damage using artificial neural networks[J]. Engineering Structures, 2009, 31(2): 600 — 606.
[2] 刘洪波, 佟瑶, 蒋垚俊, 等. RC框架结构地震易损性分析方法研究进展[J]. 世界地震工程, 2020, 36(3): 141 — 150.
LIU Hongbo, TONG Yao, JIANG Yaojun, et al. Recent development of seismic fragility analysis methods for RC frame structures[J]. World Earthquake Engineering, 2020, 36(3): 141 — 150.(in Chinese)
[3] 赵一男, 公茂盛, 杨游. 结构损伤识别方法研究综述[J]. 世界地震工程, 2020, 36(2): 73 — 84.
ZHAO Yinan, GONG Maosheng, YANG You. A review of structural damage identification methods[J]. World Earthquake Engineering, 2020, 36(2): 73 — 84.(in Chinese)
[4] CAWLEY P, ADAMS R D. The location of defects in structures from measurements of natural frequencies[J]. The Journal of Strain Analysis for Engineering Design, 1979, 14(2): 49 — 57.
[5] LAM H F, KO J M, WONG C W. Localization of damaged structural connections based on experimental modal and sensitivity analysis[J]. Journal of Sound and Vibration, 1998, 210(1): 91 — 115.
[6] 常鹏, 杨娜, 张国培. 多分辨率分析和小波能量曲率的框架结构损伤识别[J]. 哈尔滨工业大学学报, 2016, 48(6): 170 — 176.
CHANG Peng, YANG Na, ZHANG Guopei. Damage identification of the frame structure based on multi-resolution analysis and wavelet energy curvature[J]. Journal of Harbin Institute of Technology, 2016, 48(6): 170 — 176.(in Chinese)
[7] 陆秋海, 李德葆, 张维. 利用模态试验参数识别结构损伤的神经网络法[J]. 工程力学, 1999, 16(1): 35 — 42.
LU Qiuhai, LI Debao, ZHANG Wei.Neural network method in damage detection of structures by using parameters from modal test[J]. Engineering Mechanics, 1999, 16(1): 35 — 42.(in Chinese)
[8] ELKORDY M F, CHANG K C, LEE G C. Neural networks trained by analytically simulated damage states[J]. Journal of Computing in Civil Engineering, 1993, 7(2): 130 — 145.
[9] SZEWCZYK Z P, HAJELA P. Damage detection in structures based on feature-sensitive neural networks[J]. Journal of Computing in Civil Engineering, 1994, 8(2): 163 — 178.
[10] MASRI S F, NAKAMURA M, CHASSIAKOS A G, et al. Neural network approach to detection of changes in structural parameters[J]. Journal of Engineering Mechanics, 1996, 122(4): 350 — 360.
[11] 金虎. 基于人工神经网络的结构荷载识别与损伤识别研究[D]. 杭州: 浙江大学, 2005.
JIN Hu. Study of Load Identification and Damage Detection Based on Artificial Neural Networks[D]. Hangzhou: Zhejiang University, 2005.(in Chinese)
[12] WANG D J, LI J K. Artificial intelligence aided prediction of building structure anti-seismic[C]//2021 5th International Conference on Computing Methodologies and Communication(ICCMC). IEEE, 2021: 1403 — 1407.
[13] PARK Y J, ANG A H S. Mechanistic seismic damage model for reinforced concrete[J]. Journal of Structural Engineering, 1985, 111(4): 722 — 739.
[14] 孙红跃, 董峰. 基于神经网络的建筑结构损伤识别方法[J]. 控制工程, 2015, 22(2): 287 — 290.
SUN Hongyue, DONG Feng. Damage identification of building structural based on neural network[J]. Control Engineering of China, 2015, 22(2): 287 — 290.(in Chinese)
[15] XU Y J, LU X Z, TIAN Y, et al. Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning[J]. Journal of Earthquake Engineering, 2020, 26(8): 4259 — 4279.
[16] 贾慧娜, 岳高伟, 贾立文. 抗震设防烈度对多层混凝土结构性能的影响[J]. 土木建筑与环境工程, 2012, 34(增刊1): 116 — 119.
JIA Huina, YUE Gaowei, JIA Liwen. Influence of seismic fortification intensity for multilayer concrete structure performance[J]. Journal of Civil, Architectural & Environmental Engineering, 2012, 34(S1): 116 — 119.(in Chinese)
[17] ELENAS A, MESKOURIS K. Correlation study between seismic acceleration parameters and damage indices of structures[J]. Engineering Structures, 2001, 23(6): 698 — 704.
[18] MORFIDIS K, KOSTINAKIS K. Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks[J]. Engineering Structures, 2018, 165: 120 — 141.
[19] 公茂盛, 谢礼立, 欧进萍. 结构振动台模型模态参数识别新方法研究[J]. 振动工程学报, 2010, 23(2): 230 — 236.
GONG Maosheng, XIE Lili, OU Jinping. A method for modal parameter identification of structural shaking table model[J]. Journal of Vibration Engineering, 2010, 23(2): 230 — 236.(in Chinese)
[20] 杨游. RC框架结构地震反应与损伤关联模型研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2020.
YANG You. Study on the Correlation Model between Seismic Response and Damage of RC Frame Structures[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2020.(in Chinese)
[21] CHUNG Y S, MEYER C, SHINOZUKA M. Modeling of concrete damage[J]. Structural Journal, 1989, 86(3): 259 — 271.
[22] MAZZON S, MCKENNA F,et al. Open system for earthquake engineering simulation user command-language manual [Z]. http://opensees.berkeley.edu, 2006.
[23] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete[J]. Journal of Structural Engineering, 1988, 114(8): 1804 — 1826.
[24] 郭锋, 吴东明, 许国富, 等. 中外抗震设计规范场地分类对应关系[J]. 土木工程与管理学报, 2011, 28(2): 63 — 66.
GUO Feng, WU Dongming, XU Guofu, et al. Site classification corresponding relationship between Chinese and the overseas seismic design codes[J]. Journal of Civil Engineering and Management, 2011, 28(2): 63 — 66.(in Chinese)
[25] GB 50011 – 2010 建筑抗震设计规范[S].北京:中国建筑工业出版社,2016.
GB 50011 – 2010 Code for Seismic Design of Buildings[S].Beijing:China Architecture & Building Press,2016.
[26] XU Y J, LU X Z, TIAN Y, et al. Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning[J]. Journal of Earthquake Engineering, 2022,26(8): 4259 — 4279.
[27] 左占宣, 李爽, 翟长海, 等. 结构周期延长对倒塌分析中地震动强度指标选择的影响[J]. 建筑结构学报, 2019, 40(5): 141 — 148.
ZUO Zhanxuan, LI Shuang, ZHAI Changhai, et al. Influence of structural period elongation on ground motion intensity index in collapse analysis[J]. Journal of Building Structures, 2019, 40(5): 141 — 148.(in Chinese)
[28] KINGMA D P, BA J. Adam: a method for stochastic optimization[EB/OL]. 2014: arXiv: 1412.6980. https://arxiv.org/abs/1412.6980.
[29] ABADI M, AGARWAL A, BARHAM P, et al. TensorFlow: large-scale machine learning on heterogeneous distributed systems. ArXiv160304467 Cs.
[30] STONE W, TAYLOR A W. Seismic performance of circular bridge columns designed in accordance with AASHTO/CALTRANS standards. Gaithersburg(MD). 1993.

备注/Memo

备注/Memo:
收稿日期:2021-09-07; 修回日期:2022-03-05
基金项目:国家自然科学基金资助项目(52078472); 国家重点研发计划资助(2017YFC1500602)
作者简介:杨耀鑫(1998 —),男,硕士研究生,主要从事结构抗震方向的研究.E-mail:yyx19980304@outlook.com
通讯作者:杨永强(1983 —),男,研究员,硕士生导师,主要从事结构抗震方向的研究. E-mail:yangiem@foxmail.com
更新日期/Last Update: 1900-01-01