[1]鄢生全,邵晨曦,曹飒飒.SMA负刚度双曲面减震装置的优化及抗震性能研究[J].世界地震工程,2023,39(01):100-108.[doi:10.19994/j.cnki.WEE.2023.0011]
 YAN Shengquan,SHAO Chenxi,CAO Sasa.Optimization and seismic performance of SMA-based negative stiffness isolation device[J].,2023,39(01):100-108.[doi:10.19994/j.cnki.WEE.2023.0011]
点击复制

SMA负刚度双曲面减震装置的优化及抗震性能研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
100-108
栏目:
常规论文
出版日期:
2023-02-15

文章信息/Info

Title:
Optimization and seismic performance of SMA-based negative stiffness isolation device
文章编号:
1007-6069(2023)01-0100-09
作者:
鄢生全1邵晨曦2曹飒飒2
1.保利长大工程有限公司,广东广州511431;2.广州大学土木工程学院,广东广州510006
Author(s):
YAN Shengquan1 SHAO Chenxi2 CAO Sasa2
1. Poly Changda Engineering CO.,lTD., Guangzhou 511431, China; 2. Civil Engineering Guangzhou University, Guangzhou 510006, China
关键词:
桥梁抗震 负刚度 形状记忆合金 限位能力 数值模拟
Keywords:
seismic design of bridge negative stiffness shape memory alloy displacement-limiting capacity numerical simulation
分类号:
TU318
DOI:
10.19994/j.cnki.WEE.2023.0011
文献标志码:
A
摘要:
SMA负刚度双曲面隔震装置的试验结果表明:绕支座布置的SMA索在支座转弯处不能自由滑动,导致SMA索的受力与设计目标严重不符。为解决上述问题,拟提出一种优化升级的SMA负刚度双曲面减震装置。基于某一连续梁桥,比较研究了正刚度、零刚度与该负刚度装置的抗震性能。结果表明:该优化装置具有良好的耗能能力、自恢复性能以及强震下的限位能力。与正刚度装置及零刚度装置相比,该装置具有更好的抗震性能。
Abstract:
The experimental results of SMA-based negative stiffness isolator show that the SMA cables arranged around the bearing can not slide freely, cause the serious inconsistency between the stress of SMA cables and the design goal. To solve this issue, an optimized SMA-based negative stiffness isolation device was proposed. Based on a continuous bridge, the seismic performance of positive stiffness, zero stiffness and negative stiffness devices is compared. The results show that the device has good energy dissipation capacity, re-centering capability and displacement-limiting capacity. Compared with other devices, the device has a better seismic performance.

参考文献/References:

[1] 郭安薪, 李惠, 李忠军, 等. 高架桥梁的地震碰撞和落梁分析及其控制[J]. 防灾减灾工程学报, 2010, 30(增刊1): 172 — 176.
GUO Anxin, LI Hui, LI Zhongjun, et al. Analysis and control of seismic collision and beam falling of elevated bridge[J]. Journal of Disaster Prevention and Mitigation Engineering, 2010, 30(S1): 172 — 176.(in Chinese)
[2] 杜修力, 韩强. 桥梁抗震研究若干进展[J]. 地震工程与工程振动, 2014, 34(4): 1 — 14.
DU Xiuli, HAN Qiang. Research progress on seismic design of bridges[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4): 1 — 14.(in Chinese)
[3] 王欣欣. 落梁原因分析及防落梁措施[J]. 工程建设与设计, 2015(1): 96 — 99.
WANG Xinxin. The cause of fall beam at the prevention measures[J]. Construction & Design for Engineering, 2015(1): 96 — 99.(in Chinese)
[4] 唐伟健, 王东升, 张鹏颺, 等. 桥梁震害的历史回顾(上)[J]. 地震工程与工程振动, 2021, 41(4): 70 — 80.
TANG Weijian, WANG Dongsheng, ZHANG Pengyang, et al. A review of the seismic damage history of bridges(Ⅰ)[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(4): 70 — 80.(in Chinese)
[5] OZBULUT O E, HURLEBAUS S, DESROCHES R. Seismic response control using shape memory alloys: a review[J]. Journal of Intelligent Material Systems and Structures, 2011, 22(14): 1531 — 1549.
[6] 邓宗才, 刘春国. SMA超弹性及减隔震器的研究与发展[J]. 工程建设, 2006, 38(5): 1 — 6.
DENG Zongcai, LIU Chunguo. Research and development of SMA super-elasticity and damper and shock isolator[J]. Engineering Construction, 2006, 38(5): 1 — 6.(in Chinese)
[7] LI S, WANG J Q, ALAM M S. Seismic performance assessment of a multispan continuous isolated highway bridge with superelastic shape memory alloy reinforced piers and restraining devices[J]. Earthquake Engineering & Structural Dynamics, 2021, 50(2): 673 — 691.
[8] ZHUANG P, WANG W, LI Y B, et al. Cyclic behavior of an adaptive seismic isolation system combining a double friction pendulum bearing and shape memory alloy cables[J]. Smart Materials and Structures, 2021, 30(7): 075003.
[9] CAO S S, OZBULUT O E, WU S W, et al. Multi-level SMA/lead rubber bearing isolation system for seismic protection of bridges[J]. Smart Materials and Structures, 2020, 29(5): 055045.
[10] 庄鹏, 薛素铎, 韩淼. SMA弹簧-摩擦支座滞回性能试验研究[J]. 地震工程与工程振动, 2016, 36(4): 163 — 169.
ZHUANG Peng, XUE Suduo, HAN Miao. Experimental study of hysteretic performance of SMA spring-friction bearing[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(4): 163 — 169.(in Chinese)
[11] DONG H H, DU X L, HAN Q. Seismic responses of steel frame structures with self-centering energy dissipation braced on shape memory alloy cables[J]. Advances in Structural Engineering, 2019, 22(9): 2136 — 2148.
[12] CAO S S, OZBULUT O E. Long-stroke shape memory alloy restrainers for seismic protection of bridges[J]. Smart Materials and Structures, 2020, 29(11): 115005.
[13] LIANG D, ZHENG Y, FANG C, et al. Shape memory alloy(SMA)-cable-controlled sliding bearings: development, testing, and system behavior[J]. Smart Materials and Structures, 2020, 29(8): 085006.
[14] 崔恒硕, 樊珊珊, 刘泽鹏, 等. 新型SMA橡胶支座及其抗震分析[J]. 科技风, 2019(15): 249 — 250.
CUI Hengshuo, FAN Shanshan, LIU Zepeng, et al. New SMA rubber bearing and its seismic analysis[J]. Technology Trend, 2019(15): 249 — 250.(in Chinese)
[15] 郭大伟. SMA-叠层橡胶支座低周往复荷载试验及其在近断层桥梁减隔震中的应用研究[D]. 南京: 东南大学, 2016.
GUO Dawei. Tests for a SMA-Laminated Rubber Bearing under Low-Cycle Reversed Loading and Its Application into Isolated Bridges Subjected to Near-Fault Ground Motions[D]. Nanjing: Southeast University, 2016.(in Chinese)
[16] 曹飒飒, 伍隋文, 孙卓, 等. 梁桥多级设防SMA减震装置[J]. 振动与冲击, 2019, 38(24): 209 — 217.
CAO Sasa, WU Suiwen, SUN Zhuo, et al. A multi-level performance SMA-based isolation system in girder bridges[J]. Journal of Vibration and Shock, 2019, 38(24): 209 — 217.(in Chinese)
[17] CHANG H H, CAO S S, JI H Y. SMA negative stiffness damper[C]//2020 International Conference on Intelligent Transportation, Big Data & Smart City(ICITBS). Vientiane, Laos. IEEE,: 1043 — 1048.
[18] 孙彤. 负刚度减震系统的理论和试验研究[D]. 大连: 大连理工大学, 2017.
SUN Tong. Theoretical and Experimental Studies on Vibration Control System with Negative Stiffness Device[D]. Dalian: Dalian University of Technology, 2017.(in Chinese)
[19] CAO S S, OZBULUT O E, SHI F, et al. An SMA cable-based negative stiffness seismic isolator: development, experimental characterization, and numerical modeling[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(14): 1819 — 1833.
[20] 纪泓言, 曹飒飒, 邵晨曦, 等. 多级设防SMA减震装置力学性能试验研究[J]. 工程力学, 2022, 39(增刊1): 50 — 57.
JI Hongyan, CAO Sasa, SHAO Chenxi, et al. Experimental study on mechanical performance of multi-level SMA lead rubber bearing[J]. Engineering Mechanics, 2022, 39(S1): 50 — 57.(in Chinese)

相似文献/References:

[1]宋凯,王志强,胡世德.改善桥梁结构地震性能的措施研究[J].世界地震工程,2008,(01):158.
 SONG Kai,WANG Zhi-qiang,HU Shi-de.Study on measures for improving the seismic performance of bridges[J].,2008,(01):158.
[2]孙治国,刘亚明,司炳君,等.基于OpenSees的桩-土-桥墩相互作用非线性数值分析模型[J].世界地震工程,2018,34(04):067.
 SUN Zhiguo,LIU Yaming,SI Bingjun,et al.Nonlinear analysis model for pile-soil-pier interaction based on OpenSees platform[J].,2018,34(01):067.
[3]赵泰儀,孙治国,石岩,等.基于纤维梁柱单元的桥梁墩柱地震反应模拟方法研究[J].世界地震工程,2019,35(01):117.
 ZHAO Taiyi,SUN Zhiguo,SHI Yan,et al.Research on the simulation method for the seismic responses of bridge piers by using fiber beam-column elements[J].,2019,35(01):117.

备注/Memo

备注/Memo:
收稿日期:2022-05-15; 修回日期:2022-08-09
基金项目:国家自然科学基金项目(52178124,51608136, 51278134); 广东省自然科学基金(2020A1515010231); 广东省科技计划项目(2020A1414010271); 中国地震局工程力学研究所基本科研业务费专项(2019D19)
作者简介:鄢生全(1983 —),男,高级工程师,学士,主要从事路桥施工管理工作.E-mail: 89580826@qq.com
通讯作者:曹飒飒(1982 —),男,博士,主要从事桥梁抗震研究.E-mail: cao@gzhu.edu.cn
更新日期/Last Update: 1900-01-01