[1]陈丰收,吕述晖,李安琪.基于快速非支配排序遗传算法的阻尼器多目标优化布置[J].世界地震工程,2023,39(01):109-117.[doi:10.19994/j.cnki.WEE.2023.0012]
 CHEN Fengshou,LU Shuhui,LI Anqi.Multi-objective optimal arrangement of dampers based on nondominated sorting genetic algorithm-II[J].,2023,39(01):109-117.[doi:10.19994/j.cnki.WEE.2023.0012]
点击复制

基于快速非支配排序遗传算法的阻尼器多目标优化布置
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
109-117
栏目:
常规论文
出版日期:
2023-02-15

文章信息/Info

Title:
Multi-objective optimal arrangement of dampers based on nondominated sorting genetic algorithm-II
文章编号:
1007-6069(2023)01-0109-09
作者:
陈丰收1吕述晖1李安琪2
1.中交四航工程研究院有限公司,广州510000;2.广州市设计院,广州510000
Author(s):
CHEN Fengshou1 LU Shuhui1 LI Anqi2
1. CCCC Fourth Harbor Engineering Institute Co., Ltd, guangzhou 510000, China; 2. Guangzhou Design Institute, Guangzhou 510000, China
关键词:
NSGA-II 粗粒度-主从式并行遗传算法 阻尼器 优化布置 消能减震结构
Keywords:
NSGA-II Coarse-grained master-slave parallel genetic algorithms damper optimal arrangement energy dissipation structure
分类号:
TU352.1
DOI:
10.19994/j.cnki.WEE.2023.0012
文献标志码:
A
摘要:
将快速非支配排序遗传算法(NSGA-II)和并行遗传算法相结合,提出内嵌NSGA-II的粗粒度-主从式并行遗传算法。该算法将种群分为多个子种群,每个子种群可独立并行执行NSGA-II操作; 达到迁移周期时,子种群之间执行迁移操作; 完成迁移后,子种群再次独立并行执行NSGA-II操作。以最大层间位移角和最大楼层加速度为目标函数,对14层消能减震钢框架结构上的阻尼器布置位置进行优化分析。结果表明:该算法既实现多目标优化,又提高优化速度; 对比常规隔层布置方法,该算法可使结构的层间位移角减震系数和加速度减震系数分别至少提高16.82%和16.01%。
Abstract:
A coarse-grained-master-slave parallel genetic algorithm with NSGA-II embedded is proposed by combining nondominated sorting genetic algorithm-II and parallel genetic algorithm. According to the algorithm, a population is divided into several sub-populations, which can independently complete the operation of NSGA-II in parallel. If the migration cycle is reached, the sub-populations perform the migration operation. After the migration is completed, each sub-population independently complete the operation of NSGA-II in parallel again. A 14-story energy dissipation steel frame structure is selected as the research object, and the optimal design of damper arrangement is conducted by taking maximal inter-story drift ratio and maximal floor acceleration as the control objective. The results show that the algorithm not only achieves multi-objective optimization, but also improves the optimization speed; Compared with the results of the structure with the dampers placed in every two storeys, shock absorption coefficient of inter-story drift ratio and floor acceleration of the structure equipped with the new algorithm can be increased by 16.82% and 16.01%.

参考文献/References:

[1] SOONG T T, SPENCER B F. Supplemental energy dissipation: state-of-the-art and state-of-the-practice[J]. Engineering Structures,2002, 24(3): 243 — 259.
[2] 周云, 商城豪, 张超. 消能减震技术研究与应用进展[J]. 建筑结构, 2019, 49(19): 33 — 48.
ZHOU Yun, SHANG Chenghao, ZHANG Chao. Progress in research and application of energy-dissipated technology[J]. Building Structure, 2019, 49(19): 33 — 48.(in Chinese)
[3] 崔迪, 王圳颖, 孙丽, 等. 基于SMA连接件的半刚接钢框架-混凝土墙结构滞回性能试验研究[J]. 世界地震工程, 2020, 36(2): 44 — 53.
CUI Di, WANG Zhenying, SUN Li, et al. Experimental investigation on hysteresis behavior of PSRCW structure with SMA shear connectors[J]. World Earthquake Engineering, 2020, 36(2): 44 — 53.(in Chinese)
[4] HAUPT R L. An introduction to genetic algorithms for electromagnetics[J]. IEEE Antennas and Propagation Magazine, 1995, 37(2): 7 — 15.
[5] FUJITA K, MOUSTAFA A, TAKEWAKI I. Optimal placement of viscoelastic dampers and supporting members under variable critical excitations[J]. Earthquakes and Structures, 2010, 1(1): 43 — 67.
[6] MOHEBBI M, JOGHATAIE A. Designing optimal tuned mass dampers for nonlinear frames by distributed genetic algorithms[J]. The Structural Design of Tall and Special Buildings, 2012, 21(1): 57 — 76.
[7] 燕乐纬, 陈洋洋, 周云. 基于数字序列编码遗传算法的高层结构黏滞阻尼器优化布置[J]. 振动与冲击, 2015, 34(3): 101 — 107.
YAN Lewei, CHEN Yangyang, ZHOU Yun. Optimal positioning of viscous dampers in tall buildings based on digital sequence conding genetic algorithm[J]. Journal of Vibration and Shock, 2015, 34(3): 101 — 107.(in Chinese)
[8] 王子龙, 任文杰. 基于遗传算法的粘滞阻尼器减震结构优化设计研究[J]. 世界地震工程, 2021, 37(2): 123 — 131.
WANG Zilong, REN Wenjie. Research on optimization design for structure with viscous dampers based on genetic algorithm[J]. World Earthquake Engineering, 2021, 37(2): 123 — 131.(in Chinese)
[9] LÓPEZ-GONZÁLEZ A, MEDA CAMPAÑA J A, HERNÁNDEZ MARTÍNEZ E G, et al. Multi robot distance based formation using Parallel Genetic Algorithm[J]. Applied Soft Computing, 2020, 86: 105929.
[10] 马宏伟, 陈丰收. 基于粗粒度并行遗传算法的阻尼器优化布置[J]. 华南理工大学学报(自然科学版), 2019, 47(11): 104 — 112.
MA Hongwei, CHEN Fengshou. Optimal arrangement of dampers based on coarse-grained parallel genetic algorithm[J]. Journal of South China University of Technology(Natural Science Edition), 2019, 47(11): 104 — 112.(in Chinese)
[11] 刘纲, 杨溥, 彭闯. 基于多目标遗传算法的阻尼器抗震加固方案研究[J]. 建筑结构学报, 2016, 37(S1): 55 — 61.
LIU Gang, YANG Pu, PENG Chuang. Research on seismic strengthening scheme with damper using multi-objective genetic algorithm[J]. Journal of Building Structures, 2016, 37(S1): 55 — 61.(in Chinese)
[12] BAKHSHINEZHAD S, MOHEBBI M. Multi-objective optimal design of semi-active fluid viscous dampers for nonlinear structures using NSGA-II[J]. Structures, 2020, 24: 678 — 689.
[13] LIU Y Y, WANG S W. A scalable parallel genetic algorithm for the Generalized Assignment Problem[J]. Parallel Computing, 2015, 46: 98 — 119.
[14] ZHANG M Q, WANG L, CUI Z H, et al. Fast nondominated sorting genetic algorithm II with Lévy distribution for network topology optimization[J]. Mathematical Problems in Engineering, 2020, 2020: 1 — 12.
[15] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182 — 197.
[16] JIAO L C, WANG L. A novel genetic algorithm based on immunity[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2000, 30(5): 552 — 561.

备注/Memo

备注/Memo:
收稿日期:2020-12-30; 修回日期:2022-01-25
基金项目:广州市珠江科技新星专项资助(201806010162),广州市珠江科技新星专项资助(201906010023)
作者简介:陈丰收(1994 —),男,助理工程师,硕士,主要从事钢结构抗震和智能计算研究. E-mail:cfengshou@cccc4.com
更新日期/Last Update: 1900-01-01