[1]刘晶磊,张政,夏彬,等.高速铁路桩板结构对瑞利波的被动隔震试验研究[J].世界地震工程,2023,39(01):156-163.[doi:10.19994/j.cnki.WEE.2023.0017]
 LIU Jinglei,ZHANG Zheng,XIA Bin,et al.Experimental research on passive vibration isolation of the pile-slab structure to Rayleigh wave in high speed railway[J].,2023,39(01):156-163.[doi:10.19994/j.cnki.WEE.2023.0017]
点击复制

高速铁路桩板结构对瑞利波的被动隔震试验研究
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
156-163
栏目:
常规论文
出版日期:
2023-02-15

文章信息/Info

Title:
Experimental research on passive vibration isolation of the pile-slab structure to Rayleigh wave in high speed railway
文章编号:
1007-6069(2023)01-0156-08
作者:
刘晶磊123张政123夏彬123刘佳凡123赵敏2毕全超2
1.河北省土木工程诊断、改造与抗灾重点实验室,河北张家口075000;2.河北建筑工程学院,河北张家口075000;3.河北省寒冷地区交通基础设施工程技术创新中心,河北张家口075000
Author(s):
LIU Jinglei123 ZHANG Zheng123 XIA Bin123 LIU Jiafan123 ZHAO Min2 BI Quanchao2
1. Hebei Key Laboratory of Diagnosis, Reconstruction and Anti-disaster of Civil Engineering, Zhangjiakou 075000, China; 2. Hebei University of Architecture, Zhangjiakou 075000, China; 3. Hebei Innovation Centerof Transportation Infrastructure in Cold Region, Zhangjiakou 075000, China
关键词:
桩板结构 瑞利波 被动隔震性能 隔震区域
Keywords:
pile-slab structure Rayleigh wave passive vibration isolation performance vibration isolation area
分类号:
TU435
DOI:
10.19994/j.cnki.WEE.2023.0017
文献标志码:
A
摘要:
为研究高速铁路桩板结构被动隔震效果,以减震率作为隔震性能评价指标。通过模型试验分析不同几何参数的桩板结构隔震性能,并绘制减震率等值线图以描述其隔震区域。基于试验得到以下结论:桩板结构可以有效阻隔瑞利波,增加桩长、桩径和承载板厚度,并减小埋深与桩间距,可以提高隔震性能并增大有效隔震面积。减震率增长幅度随桩长、桩径和承载板厚度增大而减小,故桩径和桩间距参数宜控制在0.33至0.67之间,桩长参数宜控制在0.40至0.80之间,且应尽可能减小埋深。当砼使用方量相同时,隔震效果从强到弱依次为:桩长、承载板厚度和桩径。
Abstract:
In order to study the passive vibration isolation effect of the pile-slab structure of high-speed railway, the seismic reduction rate is used as the evaluation index of vibration isolation performance. Through the model test, the vibration isolation performance of the pile-slab structure with different geometric parameters is compared and analyzed, and the isoline map of seismic reduction rate is drawn to describe its vibration isolation area. Based on the test, the following conclusions are obtained: the pile-plate structure can effectively block the Rayleigh wave. Increasing the pile length, pile diameter and bearing slab thickness, and reducing the buried depth and pile spacing can improve the vibration isolation performance and increase the effective vibration isolation area.The increase range of seismic reduction rate decreases with the increase of pile length, pile diameter and bearing slab thickness, so the parameters of pile diameter and pile spacing should be controlled between 0.33 and 0.67, the parameters of pile length should be controlled between 0.40 and 0.80, and the buried depth should be reduced as much as possible. When the concrete volume is the same, the isolation effect from strong to weak is: pile length, bearing slab thickness, pile diameter.

参考文献/References:

[1] 娄平, 宫凯伦, 赵晨. 地震作用下CRTS Ⅲ型板式无砟轨道行车安全性[J]. 铁道科学与工程学报, 2020, 17(1): 1 — 7.
LOU Ping, GONG Kailun, ZHAO Chen. Vehicle running safety on CRTS Ⅲ slab ballastless track under earthquake[J]. Journal of Railway Science and Engineering, 2020, 17(1): 1 — 7.(in Chinese)
[2] 周颖, 吴浩, 顾安琪. 地震工程: 从抗震、减隔震到可恢复性[J]. 工程力学, 2019, 36(6): 1 — 12.
ZHOU Ying, WU Hao, GU Anqi. Earthquake engineering: from earthquake resistance, energy dissipation, and isolation, to resilience[J]. Engineering Mechanics, 2019, 36(6): 1 — 12.(in Chinese)
[3] PEPLOW A T, JONES C J C, PETYT M. Surface vibration propagation over a layered elastic half-space with an inclusion[J]. Applied Acoustics, 1999, 56(4): 283 — 296.
[4] TAKEMIYA H. Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct[J]. Soil Dynamics and Earthquake Engineering, 2004, 24(1): 69 — 87.
[5] STEENBERGEN M J M M, METRIKINE A V, ESVELD C. Assessment of design parameters of a slab track railway system from a dynamic viewpoint[J]. Journal of Sound and Vibration, 2007, 306(1-2): 361 — 371.
[6] 高广运, 熊浩, 李伟, 等. 水平-摇摆耦合振动波阻板主动隔振三维分析[J]. 岩土力学, 2009, 30(1): 67 — 72.
GAO Guangyun, XIONG Hao, LI Wei, et al. 3D analysis of active vibration isolation by wave impeding block under horizontal-rocking coupled loading[J]. Rock and Soil Mechanics, 2009, 30(1): 67 — 72.(in Chinese)
[7] 李宁, 高广运, 郑建国. 水平激振下波阻板主动隔振试验与数值计算[J]. 地下空间与工程学报, 2010, 6(1): 90 — 95.
LI Ning, GAO Guangyun, ZHENG Jianguo. Field experimental and numerical study on active vibration isolation by WIB under horizontal loading[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(1): 90 — 95.(in Chinese)
[8] 时刚, 李永辉. 弹性地基中波阻板对入射Rayleigh波的远场被动隔振研究[J]. 世界地震工程, 2019, 35(2): 11 — 17.
SHI Gang, LI Yonghui. Passive vibration isolation effectiveness of wave impedance block under incident Rayleigh wave in elastic foundation[J]. World Earthquake Engineering, 2019, 35(2): 11 — 17.(in Chinese)
[9] 孔超. 一种基于周期性结构的减震屏障研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
KONG Chao. A Study on Seismic Attenuation Barrier Based on Periodic Structure[D]. Harbin: Harbin Institute of Technology, 2019.(in Chinese)
[10] PU X B, SHI Z F. Surface-wave attenuation by periodic pile barriers in layered soils[J]. Construction and Building Materials, 2018, 180: 177 — 187.
[11] BRÛLÉ S, JAVELAUD E H, ENOCH S, et al. Flat lens effect on seismic waves propagation in the subsoil[J]. Scientific Reports, 2017, 7(1): 18066.
[12] 宋永山, 高盟, 彭晓东, 等. 桩承式高速铁路路基的地震反应特性研究[J]. 地震工程学报, 2021, 43(3): 644 — 653.
SONG Yongshan, GAO Meng, PENG Xiaodong, et al. Seismic response characteristics of piled high-speed railway subgrade[J]. China Earthquake Engineering Journal, 2021, 43(3): 644 — 653.(in Chinese)
[13] MUHAMMAD, LIM C W, KAMIL Z·UR K K. Wide Rayleigh waves bandgap engineered metabarriers for ground born vibration attenuation[J]. Engineering Structures, 2021, 246: 113019.
[14] 孙成禹, 李振春. 地震波动力学基础[M]. 北京: 石油工业出版社, 2011.
SUN Chengyu, LI Zhenchun. Fundamentals of Seismic Wave Dynamics[M]. Beijing: Petroleum Industry Press, 2011.(in Chinese)
[15] GB 50463—2019 工程隔振设计标准[S].北京:中国计划出版社,2019.
GB 50463—2019 Standard for Design of Engineering Vibration Isolation[S].Beijing: China Planning Press,2019.(in Chinese)
[16] 杨长卫, 童心豪, 王栋, 等. 地震作用下有砟轨道路基动力响应规律振动台试验[J]. 岩土力学, 2020, 41(7): 2215 — 2223.
YANG Changwei, TONG Xinhao, WANG Dong, et al. Shaking table test of dynamic response law of subgrade with ballast track under earthquake[J]. Rock and Soil Mechanics, 2020, 41(7): 2215 — 2223.(in Chinese)
[17] 吴忠铁, 范萍萍, 杜永峰, 等. 地震波参数对基础隔震体系的减震效果影响研究与试验验证[J]. 土木工程学报, 2019, 52(6): 35 — 44, 54.
WU Zhongtie, FAN Pingping, DU Yongfeng, et al. Experimental verification and study on influence of seismic wave parameters on seismic mitigation effect of base isolation system[J]. China Civil Engineering Journal, 2019, 52(6): 35 — 44, 54.(in Chinese)
[18] 牛滨华, 孙春岩. 地震波理论研究进展: 介质模型与地震波传播[J]. 地球物理学进展, 2004, 19(2): 255 — 263.
NIU Binhua, SUN Chunyan. Developing theory of propagation of seismic waves—medium model and propagation of seismic waves[J]. Progress in Geophysics, 2004, 19(2): 255 — 263.(in Chinese)
[19] 尚守平, 周志锦, 刘可, 等. 一种钢筋-沥青复合隔震层的性能[J]. 铁道科学与工程学报, 2009, 6(3): 13 — 16.
SHANG Shouping, ZHOU Zhijin, LIU Ke, et al. The research on the steel-asphalt isolation lay[J]. Journal of Railway Science and Engineering, 2009, 6(3): 13 — 16.(in Chinese)
[20] 刘晶磊, 张冲冲, 刘航, 等. 分层土地基中几何参数对单排混凝土桩隔振效果的影响[J]. 世界地震工程, 2021, 37(2): 132 — 142.
LIU Jinglei, ZHANG Chongchong, LIU Hang, et al. Influence of geometric parameters on vibration isolation performance of single-row concrete piles in layered soil foundation[J]. World Earthquake Engineering, 2021, 37(2): 132 — 142.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2022-03-17; 修回日期:2022-06-01
基金项目:2022年度河北省高等学校科学研究重点项目(ZD2022017); 河北建筑工程学院研究生创新基金(XY2023044)
作者简介:刘晶磊(1981 —),男,副教授,博士,主要从事土的动力特性、铁路路基研究. E-mail:kingbest_1118@163.com
通讯作者:毕全超(1981 —),男,副教授,从事桥梁隧道工程研究. E-mail:hbjzdxbqc@sina.com
更新日期/Last Update: 1900-01-01