[1]蓝先林,马白虎,贾宏宇,等.旋转地震合成及其在大跨度悬索桥中的应用[J].世界地震工程,2023,39(01):164-172.[doi:10.19994/j.cnki.WEE.2023.0018]
 LAN Xianlin,MA Baihu,JIA Hongyu,et al.Rotational seismic synthesis and it's application in long span suspension bridges[J].,2023,39(01):164-172.[doi:10.19994/j.cnki.WEE.2023.0018]
点击复制

旋转地震合成及其在大跨度悬索桥中的应用
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
164-172
栏目:
常规论文
出版日期:
2023-02-15

文章信息/Info

Title:
Rotational seismic synthesis and it's application in long span suspension bridges
文章编号:
1007-6069(2023)01-0164-09
作者:
蓝先林1马白虎2贾宏宇3徐向东1杜镔1
1.贵州省交通规划勘察设计研究院股份有限公司,贵州贵阳550081;2.贵州省公路开发有限公司,贵州贵阳550081;3.西南交通大学土木工程学院,四川成都610000
Author(s):
LAN Xianlin1 MA Baihu2 JIA Hongyu3 XU Xiangdong1 DU Bin1
1.Guizhou Transportation Planning Survey and Design Academe Co. Ltd., Guiyang 550081, China; 2. Highway Administration Bureau of Guizhou)/( Province, Guiyang 550081, China; 3. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
关键词:
旋转地震动 地震动合成 大跨度悬索桥 地震响应
Keywords:
Rotational ground motion ground motion synthesis long span suspension bridge seismic response
分类号:
TU311.3
DOI:
10.19994/j.cnki.WEE.2023.0018
文献标志码:
A
摘要:
为探究旋转地震动在大跨度悬索桥中的应用,首先,从线弹性理论和功率谱角度基于随机振动理论提出了6维地震动加速度功率谱模型; 其次,基于MATLAB编制旋转地震动人工地震合成程序,从反应谱角度对合成地震动进行了正确性验证和拟合精度迭代调整; 最后,分析了旋转地震动与地震动入射角对桥梁结构地震响应的影响。研究表明:人工合成的地震动平动分量反应谱与实测地震动的平动分量反应谱吻合度较高; 六维地震动的主梁跨中竖向位移越是三维平动地震动的3倍,而主缆轴力峰值接近2.25E+05kN,约是三维平动地震动的1.3倍; 旋转地震动和地震动入射角将会加大桥梁结构的位移响应和内力响应,且会减小塔底截面和桩最不利截面的安全性。
Abstract:
In order to explore the application of rotational ground motion in long-span suspension bridge, a 6-D power spectrum model of ground motion acceleration based on random vibration theory is proposed from the perspective of linear elasticity theory and power spectrum. Secondly, the artificial earthquake synthesis program of rotational ground motion is compiled based on MATLAB. The correctness of synthetic ground motion is verified and the fitting accuracy is adjusted iteratively from the perspective of response spectrum. Finally, the influence of rotational ground motion and incident angle of ground motion on seismic response of bridge structure is analyzed. The results show that the synthetic response spectrum of translational component of ground motion is in good agreement with the measured response spectrum of translational component of ground motion; the vertical displacement of main girder in span of six dimensional ground motion is three times of that of three-dimensional translational ground motion, and the peak axial force of main cable is close to 2.25E+05kN, which is about 1.3 times of that of 3D translational ground motion. Rotation ground motion and incident angle of ground motion will increase displacement response and internal force of bridge structure. The safety of the bottom section and the pile section will be reduced.

参考文献/References:

[1] 蒋祉涵, 魏文晖. 地震动转动分量研究综述[J]. 建材世界, 2019, 40(4): 79 — 82.
JIANG Zhihan, WEI Wenhui. Review of research on ground motion rotational component[J]. The World of Building Materials, 2019, 40(4): 79 — 82.(in Chinese)
[2] 公常清, 戴靠山, 任晓崧. 随机地震动摇摆分量对风电塔结构地震响应影响的分析[J]. 土木工程学报, 2013, 46(增刊1): 275 — 280.
GONG Changqing, DAI Kaoshan, REN Xiaosong. Seismic analysis of wind turbine towers under rocking earthquake components[J]. China Civil Engineering Journal, 2013, 46(S1): 275 — 280.(in Chinese)
[3] 李宏男, 孙立晔. 地震面波产生的地震动转动分量研究[J]. 地震工程与工程振动, 2001, 21(1): 15 — 23.
LI Hongnan, SUN Liye. Rotational components of earthquake ground motions derived from surface waves[J]. Earthquake Engineering and Engineering Dynamics, 2001, 21(1): 15 — 23.(in Chinese)
[4] SURYANTO W, IGEL H, WASSERMANN J, et al. First comparison of array-derived rotational ground motions with direct ring laser measurements[J]. Bulletin of the Seismological Society of America, 2006, 96(6): 2059 — 2071.
[5] TAKEO M. Ground rotational motions recorded in near-source region of earthquakes[J]. Geophysical Research Letters, 1998, 25(6): 789 — 792.
[6] ABREU R, THOMAS C, DURAND S. Effect of observed micropolar motions on wave propagation in deep Earth minerals[J]. Physics of the Earth and Planetary Interiors, 2018, 276: 215 — 225.
[7] BASU D, CONSTANTINOU M C, WHITTAKER A S. An equivalent accidental eccentricity to account for the effects of torsional ground motion on structures[J]. Engineering Structures, 2014, 69: 1 — 11.
[8] BASU D, WHITTAKER A S, CONSTANTINOU M C. Characterizing rotational components of earthquake ground motion using a surface distribution method and response of sample structures[J]. Engineering Structures, 2015, 99: 685 — 707.
[9] 魏文晖, 薛广文, 张迪, 等. 基于小波分析的地震动转动分量研究[J]. 岩土工程学报, 2015, 37(7): 1241 — 1248.
WEI Wenhui, XUE Guangwen, ZHANG Di, et al. Rotational components of ground motion based on wavelet analysis[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(7): 1241 — 1248.(in Chinese)
[10] 刘跃伟, 李宏男. 地震动的扭转分量与结构的扭转地震作用[J]. 工程力学, 2012, 29(11): 103 — 108.
LIU Yuewei, LI Hongnan. Torsional earthquake ground motion and torsional earthquake input of building[J]. Engineering Mechanics, 2012, 29(11): 103 — 108.(in Chinese)
[11] 赵世伟, 罗奇峰. 汶川地震近场区转动分量统计分析[J]. 同济大学学报(自然科学版), 2014, 42(1): 9 — 12.
ZHAO Shiwei, LUO Qifeng. Statistical analysis of rotational components in Wenchuan earthquake near-field region[J]. Journal of Tongji University(Natural Science), 2014, 42(1): 9 — 12.(in Chinese)
[12] JIA H Y, ZHANG D Y, ZHENG S X, et al. Local site effects on a high-pier railway bridge under tridirectional spatial excitations: Nonstationary stochastic analysis[J]. Soil Dynamics and Earthquake Engineering, 2013, 52: 55 — 69.
[13] ZHANG D Y, JIA H Y, ZHENG S X, et al. A highly efficient and accurate stochastic seismic analysis approach for structures under tridirectional nonstationary multiple excitations[J]. Computers & Structures, 2014, 145: 23 — 35.
[14] ZHANG C, LU J B, JIA H Y, et al. Influence of near-fault ground motion characteristics on the seismic response of cable-stayed bridges[J].Bulletin of Earthquake Engineering, 2020, 18(14): 6375 — 6403.
[15] 贾宏宇,杨健,郑史雄,等.跨断层桥梁抗震研究综述[J].西南交通大学学报,2021,56(5):1075 — 1093.
JIA Hongyu,YANG Jian,ZHENG Shiwei,et al. A review on aseismic bridges crossing fault rupture regions[J].Journal of Southwest Jiaotong University, 2021, 56(5):1075 — 1093.(in Chinese)
[16] 来庆辉, 胡进军, 谢礼立, 等. 脉冲型地震动潜在破坏势参数的相关性分析[J]. 世界地震工程, 2020, 36(1): 35 — 43.
LAI Qinghui, HU Jinjun, XIE Lili, et al. Correlation analysison potential damage parameters of pulse-like ground motion[J]. World Earthquake Engineering, 2020, 36(1): 35 — 43.(in Chinese)
[17] 颜桂云, 潘晨阳, 薛潘荣, 等. 近断层脉冲型地震动作用下高层摩擦摆基础隔震结构的减震性能研究[J]. 世界地震工程, 2019, 35(3): 45 — 55.
YAN Guiyun, PAN Chenyang, XUE Panrong, et al. Seismic absorption performance of base-isolated high-rise structures using friction pendulums subjected to near-fault pulse ground motions[J]. World Earthquake Engineering, 2019, 35(3): 45 — 55.(in Chinese)
[18] 袁光英, 潘海洋, 马瑞升, 等. 多维地震下考虑不同破坏准则的输电塔-线体系倒塌分析[J]. 世界地震工程, 2019, 35(1): 184 — 192.
YUAN Guangying, PAN Haiyang, MA Ruisheng, et al. Collapse analysis of transmission tower-line system under multi-dimensional seismic excitation based on different failure criteria[J]. World Earthquake Engineering, 2019, 35(1): 184 — 192.(in Chinese)
[19] HAO H, OLIVEIRA C S, PENZIEN J. Multiple-station ground motion processing and simulation based on smart-1 array data[J]. Nuclear Engineering and Design, 1989, 111(3): 293 — 310.
[20] 陈航. 基于场地特性多维多点地震动模拟及桥梁结构地震响应分析[D]. 成都: 西南交通大学, 2017.
CHEN Hang. Multi-dimensional and multi-point seismic waves simulation based on site characteristics and seismic response analysis of the bridge structures[D]. Chengdu: Southwest Jiaotong University, 2017.(in Chinese)
[21] 刘毅, 李雄彦, 薛素铎. 地震动斜入射对桩-土-网壳结构地震响应影响[J]. 振动工程学报, 2015, 28(1): 139 — 147.
LIU Yi, LI Xiongyan, XUE Suduo. The effect of oblique incidence of seismic wave on seismic response of pile-soil-latticed shell[J]. Journal of Vibration Engineering, 2015, 28(1): 139 — 147.(in Chinese)
[22] 张建经, 朱传彬, 张明, 等. 地震波入射角对盆地地震反应影响的数值分析[J]. 岩石力学与工程学报, 2014, 33(增刊1): 2720 — 2727.
ZHANG Jianjing, ZHU Chuanbin, ZHANG Ming, et al. Numerical analysis for effect of incident angle of seismic wave on seismic response of basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 2720 — 2727.(in Chinese)
[23] GADE M, RAGHUKANTH S T G. Spatial variation of ground rotational motions in elastic half-space[J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 66 — 76.

备注/Memo

备注/Memo:
收稿日期:2020-09-14; 修回日期:2020-12-17
基金项目:国家自然基金面上项目(52178169); 贵州省重大科技专项计划项目(黔科合重大专项字〔2016〕3013); 贵州省交通运输厅科技项目2020-123-023
作者简介:蓝先林(1993 —),男,硕士,工程师,主要从事桥梁抗震与桥梁监测研究. E-mail: qing_lan0923@163.com
通讯作者:贾宏宇(1981 —),男,副教授,博士,博导,主要从事桥梁结构抗震及动力行为研究. E-mail: Hongyu1016@swjtu.edu.cn
更新日期/Last Update: 1900-01-01