参考文献/References:
[1] BOORE D M, SMITH C E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System(SEMS)instruments deployed off the coast of southern California[J]. Bulletin of the Seismological Society of America, 1999, 89(1): 260 — 274.
[2] AOI S, KUNUGI T, FUJIWARA H. Strong-motion seismograph network operated by nied: k-net and kik-net[J]. Journal of Japan Association for Earthquake Engineering, 2004, 4(3): 65 — 74.
[3] 胡进军, 刁红旗, 谢礼立. 海底强地震动观测及其特征的研究进展[J]. 地震工程与工程振动, 2013, 33(6): 1 — 8.
HU Jinjun, DIAO Hongqi, XIE Lili. Review of observation and characteristics of seafloor strong motion[J].Earthquake Engineering and Engineering Dynamics, 2013, 33(6): 1 — 8.(in Chinese)
[4] 申中寅. 日本海洋实时监测系统DONET简介[J]. 国际地震动态, 2018, 48(7): 34 — 40.
SHEN Zhongyin. A brief introduction to DONET in Japan[J]. Recent Developments in World Seismology, 2018, 48(7): 34 — 40.(in Chinese)
[5] 赵纪东. 中国台湾将建设首座海底地震台站[J]. 地球科学进展, 2010, 25(2): 146.
ZHAO Jidong. China will build the first submarine seismic station[J]. Advances in Earth Science, 2010, 25(2): 146.(in Chinese)
[6] LIN J Y, CHEN Y F, SU C C, et al. Seismic site response of submarine slope offshore southwestern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2018, 29(1): 51 — 63.
[7] 郑红霞, 张训华, 赵铁虎, 等. 海底监测技术之海底观测网络[J]. 海洋地质前沿, 2015, 31(5): 51 — 56.
ZHENG Hongxia, ZHANG Xunhua, ZHAO Tiehu, et al. Seafloor observation technology: seafloor observation network[J]. Marine Geology Frontiers, 2015, 31(5): 51 — 56.(in Chinese)
[8] TAKAESU M, HORIKAWA H, SUEKI K, et al. Development of an event search and download system for analyzing waveform data observed at seafloor seismic network, DONET[C]. AGU Fall Meeting. AGU Fall Meeting Abstracts, 2014.
[9] AOI S, ASANO Y, KUNUGI T, et al. MOWLAS: NIED observation network for earthquake, tsunami and volcano[J].Earth, Planets and Space, 2020, 72(1): 1 — 31.
[10] DIAO H Q, HU J J, XIE L L. Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(2): 181 — 194.
[11] PLATZBECKER M R, EHASZ J P, FRANCO R J. Seafloor earthquake measurement system, SEMS IV[M]. office of scientific & technical information technical reports, 1997.
[12] LIN J Y, CHEN Y F, SU C C,, et al. Seismic site response of submarine slope offshore southwestern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2018, 29(1): 51 — 63.
[13] GOMBERG J. Cascadia onshore-offshore site response, submarine sediment mobilization, and earthquake recurrence[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1381 — 1404.
[14] COURBOULEX F, MERCERAT E D, DESCHAMPS A, et al. Strong site effect revealed by a new broadband seismometer on the continental shelf offshore nice airport(southeastern France)[J].Pure and Applied Geophysics, 2020, 177(7): 3205 — 3224.
[15] 陈宝魁, 李宏男, 王东升, 等. 海底地震动的等延性强度折减系数谱[J]. 地震工程与工程振动, 2014, 34(2): 1 — 11.
CHEN Baokui, LI Hongnan, WANG Dongsheng, et al. Strength reduction factor spectra with constant ductility for offshore ground motions[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(2): 1 — 11.(in Chinese)
[16] CHEN Baokui, WANG Dongsheng, LI Hongnan, et al. Characteristics of earthquake ground motion on the seafloor[J]. Journal of Earthquake Engineering, 2015, 19(6): 874 — 904.
[17] CHEN Baokui, WANG Dongsheng, LI Hongnan, et al. Vertical-to-horizontal response spectral ratio for offshore ground motions: Analysis and simplified design equation[J]. Journal of Central South University, 2017, 24(1): 203 — 216.
[18] CHEN Baokui, WANG Dongsheng, CHEN Shaolin, et al. Influence of site factors on offshore ground motions: observed Results and Numerical Simulation[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106729.
[19] DHAKAL Y P, AOI S, KUNUGI T, et al. Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: a study at the Sagami Bay area K-NET sites in Japan[J].Earth, Planets and Space, 2017, 69(1): 1 — 7.
[20] DHAKAL Y P, KUNUGI T. An evaluation of strong-motion parameters at the S-net ocean-bottom seismograph sites near the Kanto Basin for earthquake early warning[J]. Frontiers in Earth Science, 2021, 9: 699439.
[21] DHAKAL Y P, KUNUGI T, SUZUKI W, et al. Strong motions on land and ocean bottom: comparison of horizontal PGA, PGV, and 5% damped acceleration response spectra in northeast Japan and the Japan trench area[J]. Bulletin of the Seismological Society of America, 2021, 111(6): 3237 — 3260.
[22] NAKANO M, NAKAMURA T, KAMIYA S, et al. Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations[J].Earth, Planets and Space, 2013, 65(1): 5 — 15.
[23] NAKANO M, NAKAMURA T, KAMIYA S I, et al. Seismic activity beneath the Nankai trough revealed by DONET ocean-bottom observations[J]. Marine Geophysical Research, 2014, 35(3): 271 — 284.
[24] 郑旭, 胡进军. 日本俯冲带地区典型强震数据的初步研究[J]. 低温建筑技术, 2017, 39(8): 27 — 31.
ZHENG Xu, HU Jinjun. Preliminary study on the typical strong ground motion from subduction zone earthquake in Japan[J]. Low Temperature Architecture Technology, 2017, 39(8): 27 — 31.(in Chinese)
[25] 胡进军, 郑鹏. 基于日本滨海强震数据的不同震源类型的衰减关系比较[J]. 建筑结构, 2017, 47(增刊1): 669 — 677.
HU Jinjun, ZHENG Peng. Comparison of attenuation relationships of different seismic types based on strong earthquake data in coastal areas Japan[J]. Building Structure, 2017, 47(S1): 669 — 677.(in Chinese)
[26] 谭景阳, 胡进军, 周旭彤, 等. 考虑不同分类的海底地震动特性及其不确定性分析[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(12): 1264 — 1271.
TAN Jingyang, HU Jinjun, ZHOU Xutong, et al. Characteristics and uncertainty of classified seafloor ground motion[J]. Journal of Tianjin University(Science and Technology), 2020, 53(12): 1264 — 1271.(in Chinese)
[27] 谭景阳, 胡进军, 周旭彤, 等. 海底与陆地地震动反应谱比定量分析[J]. 振动与冲击, 2021, 40(2): 213 — 219, 227.
TAN Jingyang, HU Jinjun, ZHOU Xutong, et al. Quantitative analysis on the difference of spectral ratios between offshore and onshore ground motions[J]. Journal of Vibration and Shock, 2021, 40(2): 213 — 219, 227.(in Chinese)
[28] 谭景阳, 胡进军, 谢礼立. 海域地震动长周期特性及其强度指标研究[J]. 振动与冲击, 2021, 40(3): 1 — 9, 27.
TAN Jingyang, HU Jinjun, XIE Lili. Long-period characteristics of offshore ground motion and its and intensity index[J]. Journal of Vibration and Shock, 2021, 40(3): 1 — 9, 27.(in Chinese)
[29] 刘渊, 薛梅. 利用DONET海底观测网研究日本南海海域俯冲带地震波各向异性[J]. 地震学报, 2021, 43(1): 73 — 83, 136.
LIU Yuan, XUE Mei. Seismic anisotropy within the Nankai area, Japan, using DONET seafloor observation network[J]. Acta Seismologica Sinica, 2021, 43(1): 73 — 83, 136.(in Chinese)
[30] ZHOU Y, MIAO T M, YANG J, et al. Seismic wave attenuation characteristics from the ground motion spectral analysis around the Kanto Basin[J]. Buildings, 2022, 12(3): 318.
[31] KUBO H, NAKAMURA T, SUZUKI W, et al. Site amplification characteristics at Nankai seafloor observation network, DONET1, Japan, evaluated using spectral inversion[J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1210 — 1218.
[32] HATAYTMA K. Theoretical evaluation of effects of sea on seismic ground motion[C]//Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, 2004.
[33] IIDA M, HATAYAMA K. Effects of seawater of Tokyo Bay on short-period strong ground motion[J]. Bulletin of the Seismological Society of America, 2007, 97(4): 1324 — 1333.
[34] PETUKHIN A, IWATA T, KAGAWA T. Study on the effect of the oceanic water layer on strong ground motion simulations[J]. Earth, Planets and Space, 2010, 62(8): 621 — 630.
[35] NAKAMURA T, TAKENAKA H, OKAMOTO T, et al. Seismic wavefields in the deep seafloor area from a submarine landslide source[J]. Pure and Applied Geophysics, 2014, 171(7): 1153 — 1167.
[36] NAKAMURA T, NAKANO M, HAYASHIMOTO N, et al. Anomalously large seismic amplifications in the seafloor area off the Kii peninsula[J]. Marine Geophysical Research, 2014, 35(3): 255 — 270.
[37] NAKAMURA T, TAKENAKA H, OKAMOTO T, et al. FDM simulation of seismic-wave propagation for an aftershock of the 2009 Suruga bay earthquake: effects of ocean-bottom topography and seawater layer[J]. Bulletin of the Seismological Society of America, 2012, 102(6): 2420 — 2435.
[38] NAKAMURA T, TAKENAKA H, OKAMOTO T, et al. Seismic wavefields in the deep seafloor area from a submarine landslide source[J]. Pure and Applied Geophysics, 2014, 171(7): 1153 — 1167.
[39] 李天男, 胡进军. 海底地震动作用下海洋工程地质体地震反应[J]. 佳木斯大学学报(自然科学版), 2017, 35(5): 745 — 750, 782.
LI Tiannan, HU Jinjun. Seismic response analysis of ocean engineering geology under ocean ground motions[J]. Journal of Jiamusi University(Natural Science Edition), 2017, 35(5): 745 — 750, 782.(in Chinese)
[40] 陈宝魁, 黄怡, 陈少林, 等.坡形场地对海底地震动的影响[J/OL]. 振动工程学报, 2022.http://kns.cnki.net/kcms/detail/32.1349.TB.20220214.1258.002.html
CHEN Baokui, HUANG Yi, CHEN Shaolin, et al. Influence of slope sites on offshore ground motion[J/OL]. Journal of Vibration Engineering, 2022.http://kns.cnki.net/kcms/detail/32.1349.TB.20220214.1258.002.html
[41] 周越, 陈苏, 李小军. 基于小波方法的近海域地震动时频特性分析[J]. 土木工程学报, 2016, 49(增刊1): 7 — 12.
ZHOU Yue, CHEN Su, LI Xiaojun. Wavelet-based time-frequency characteristic analysis on offshore ground motion[J]. China Civil Engineering Journal, 2016, 49(S1): 7 — 12.(in Chinese)
[42] HAO H. Input seismic motions for use in the structural response analysis[J]. WIT Trans Built Environ 1993, 3: 87 — 100.
[43] BI K M, HAO H. Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions[J]. Probabilistic Engineering Mechanics, 2012, 29: 92 — 104.
[44] LI Chao, HAO Hong, LI Hongnan, et al. Theoretical modeling and numerical simulation of seismic motions at seafloor[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 220 — 225.
[45] LI Chao, HAO Hong, LI Hongnan, et al. Modeling and Simulation of Spatially Correlated Ground Motions at Multiple Onshore and Offshore Sites[J]. Journal of Earthquake Engineering, 2017, 21(3): 359 — 383.
[46] FAN Shuli, SHI Yi, LIU Chunguang, et al. Simulation of spatially varying seafloor ground motions with random seawater layer and complex terrain[J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 110 — 118.
[47] LIU Guohuan, LIU Yaqiang, FENG Xiao, et al. Simulation of spatially variable seismic underground motions in saturated double-phase media with overlying water excited by SV-wave and difference from P-wave incidence[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 144 — 161.
[48] 张小玲, 栾茂田, 郭莹, 等. 地震荷载作用下海底管线的动力反应分析[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3798 — 3806.
ZHANG Xiaoling, LUAN Maotian, GUO Ying, et al. Numerical analysis of dynamic response of saturated porous seabed-pipeline under seismic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3798 — 3806.(in Chinese)
[49] ZUO Haoran, BI Kaiming, HAO Hong, et al. Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2019,121: 151 — 167.
[50] 谷音, 林颖清, 黄志杨. 考虑水-土-桥梁动力相互作用的大跨桥梁地震反应分析[J]. 自然灾害学报, 2018, 27(2): 84 — 93.
GU Yin, LIN Yingqing, HUANG Zhiyang. Seismic response of bridge structures considering hydro dynamic and soil dynamic interaction[J]. Journal of Natural Disasters, 2018, 27(2): 84 — 93.(in Chinese)
[51] 王德斌, 刘驭, 张蓬勃, 等. 海底地震动作用下近海桥梁地震响应研究[J]. 世界地震工程, 2019, 35(3): 63 — 72.
WANG Debin, LIU Yu, ZHANG Pengbo, et al. Seismic response of offshore bridges under seabed seismic motion[J]. World Earthquake Engineering, 2019, 35(3): 63 — 72.(in Chinese)
[52] 陈宝魁, 卢宏飞, 宋固全, 等. 海底地震动作用下隔震桥地震反应[J]. 南昌大学学报(工科版), 2020, 42(3): 233 — 241.
CHEN Baokui, LU Hongfei, SONG Guquan, et al. Seismic response ofthe sea-crossing isolated bridge under offshore ground motion[J]. Journal of Nanchang University(Engineering & Technology), 2020, 42(3): 233 — 241.(in Chinese)
[53] 陈宝魁. 海底地震动特性及跨海桥梁地震反应分析[D]. 大连: 大连理工大学, 2016.
CHEN Baokui. Characteristics of Offshore Ground Motions and Seismic Response Analysis of Sea-Crossing Bridges[D]. Dalian: Dalian University of Technology, 2016.(in Chinese)
[54] 张琪, 郑向远, 李炜. 海陆地震动的时频域工程特性对比[J]. 哈尔滨工业大学学报, 2020, 52(8): 38 — 45.
ZHANG Qi, ZHENG Xiangyuan, LI Wei. Comparison of temporal and spectral features of offshore and onshore ground motions[J]. Journal of Harbin Institute of Technology, 2020, 52(8): 38 — 45.(in Chinese)
[55] 陈苏, 周越, 李小军, 等. 近海域地震动的时频特征与工程特性[J]. 振动与冲击, 2018, 37(16): 227 — 233.
CHEN Su, ZHOU Yue, LI Xiaojun, et al. Time-frequency and engineering characteristics on offshore ground motion[J]. Journal of Vibration and Shock, 2018, 37(16): 227 — 233.(in Chinese)