[1]陈宝魁,王博为,王东升.海底强震观测记录与地震动特性研究进展[J].世界地震工程,2023,39(01):200-208.[doi:10.19994/j.cnki.WEE.2023.0022]
 CHEN Baokui,WANG Bowei,WANG Dongsheng.Review of offshore strong earthquake observation records and ground motion characteristics[J].,2023,39(01):200-208.[doi:10.19994/j.cnki.WEE.2023.0022]
点击复制

海底强震观测记录与地震动特性研究进展
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年01期
页码:
200-208
栏目:
常规论文
出版日期:
2023-02-15

文章信息/Info

Title:
Review of offshore strong earthquake observation records and ground motion characteristics
文章编号:
1007-6069(2023)01-0200-09
作者:
陈宝魁1王博为1王东升2
1.南昌大学工程建设学院,江西南昌330031;2.河北工业大学土木与交通学院,天津300401
Author(s):
CHEN Baokui1 WANG Bowei1 WANG Dongsheng2
1. School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China; 2. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
关键词:
海底强震台网 强震观测记录 地震动特性 数值模拟 海洋工程
Keywords:
offshore ground motion network strong motion observation records characteristics of ground motions numerical simulation ocean engineering
分类号:
P315.9
DOI:
10.19994/j.cnki.WEE.2023.0022
文献标志码:
A
摘要:
随着海洋结构物的建设快速发展,为了解海底地震动相关特性,目前在建与已建成的海底强震台网逐年增加,得到的强震数据为海底地震动特性研究提供了重要资料。本文首先,统计了世界范围内现有海底强震台网的分布,并对强震台站信息及记录特点简要总结; 其次,综述了基于海底强震记录以及数值计算等方法分析海底地震动特性的研究成果; 并且,阐述了海底地震动在海洋工程中应用的研究现状; 最后,基于现有研究成果,对海底地震动特性研究的前景进行讨论和展望。
Abstract:
With the rapid development of the construction of ocean structures, in order to understand the characteristics of offshore ground motions, the number of strong motion stations under construction and built is increasing year by year, and the strong motion data obtained provide important information for the study of the characteristics of offshore ground motion. Firstly, the existing offshore stations in the world are introduced, and the information of each station and the characteristics of their records are summarized briefly in this paper. Besides, the research results of offshore ground motion characteristics analysis based on this records and numerical analysis methods are summarized and the research status of the application of offshore ground motion in ocean engineering is described. Finally, based on the existing research results, the research prospects of offshore ground motion characteristics are discussed.

参考文献/References:

[1] BOORE D M, SMITH C E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System(SEMS)instruments deployed off the coast of southern California[J]. Bulletin of the Seismological Society of America, 1999, 89(1): 260 — 274.
[2] AOI S, KUNUGI T, FUJIWARA H. Strong-motion seismograph network operated by nied: k-net and kik-net[J]. Journal of Japan Association for Earthquake Engineering, 2004, 4(3): 65 — 74.
[3] 胡进军, 刁红旗, 谢礼立. 海底强地震动观测及其特征的研究进展[J]. 地震工程与工程振动, 2013, 33(6): 1 — 8.
HU Jinjun, DIAO Hongqi, XIE Lili. Review of observation and characteristics of seafloor strong motion[J].Earthquake Engineering and Engineering Dynamics, 2013, 33(6): 1 — 8.(in Chinese)
[4] 申中寅. 日本海洋实时监测系统DONET简介[J]. 国际地震动态, 2018, 48(7): 34 — 40.
SHEN Zhongyin. A brief introduction to DONET in Japan[J]. Recent Developments in World Seismology, 2018, 48(7): 34 — 40.(in Chinese)
[5] 赵纪东. 中国台湾将建设首座海底地震台站[J]. 地球科学进展, 2010, 25(2): 146.
ZHAO Jidong. China will build the first submarine seismic station[J]. Advances in Earth Science, 2010, 25(2): 146.(in Chinese)
[6] LIN J Y, CHEN Y F, SU C C, et al. Seismic site response of submarine slope offshore southwestern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2018, 29(1): 51 — 63.
[7] 郑红霞, 张训华, 赵铁虎, 等. 海底监测技术之海底观测网络[J]. 海洋地质前沿, 2015, 31(5): 51 — 56.
ZHENG Hongxia, ZHANG Xunhua, ZHAO Tiehu, et al. Seafloor observation technology: seafloor observation network[J]. Marine Geology Frontiers, 2015, 31(5): 51 — 56.(in Chinese)
[8] TAKAESU M, HORIKAWA H, SUEKI K, et al. Development of an event search and download system for analyzing waveform data observed at seafloor seismic network, DONET[C]. AGU Fall Meeting. AGU Fall Meeting Abstracts, 2014.
[9] AOI S, ASANO Y, KUNUGI T, et al. MOWLAS: NIED observation network for earthquake, tsunami and volcano[J].Earth, Planets and Space, 2020, 72(1): 1 — 31.
[10] DIAO H Q, HU J J, XIE L L. Effect of seawater on incident plane P and SV waves at ocean bottom and engineering characteristics of offshore ground motion records off the coast of southern California, USA[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(2): 181 — 194.
[11] PLATZBECKER M R, EHASZ J P, FRANCO R J. Seafloor earthquake measurement system, SEMS IV[M]. office of scientific & technical information technical reports, 1997.
[12] LIN J Y, CHEN Y F, SU C C,, et al. Seismic site response of submarine slope offshore southwestern Taiwan[J]. Terrestrial Atmospheric and Oceanic Sciences, 2018, 29(1): 51 — 63.
[13] GOMBERG J. Cascadia onshore-offshore site response, submarine sediment mobilization, and earthquake recurrence[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(2): 1381 — 1404.
[14] COURBOULEX F, MERCERAT E D, DESCHAMPS A, et al. Strong site effect revealed by a new broadband seismometer on the continental shelf offshore nice airport(southeastern France)[J].Pure and Applied Geophysics, 2020, 177(7): 3205 — 3224.
[15] 陈宝魁, 李宏男, 王东升, 等. 海底地震动的等延性强度折减系数谱[J]. 地震工程与工程振动, 2014, 34(2): 1 — 11.
CHEN Baokui, LI Hongnan, WANG Dongsheng, et al. Strength reduction factor spectra with constant ductility for offshore ground motions[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(2): 1 — 11.(in Chinese)
[16] CHEN Baokui, WANG Dongsheng, LI Hongnan, et al. Characteristics of earthquake ground motion on the seafloor[J]. Journal of Earthquake Engineering, 2015, 19(6): 874 — 904.
[17] CHEN Baokui, WANG Dongsheng, LI Hongnan, et al. Vertical-to-horizontal response spectral ratio for offshore ground motions: Analysis and simplified design equation[J]. Journal of Central South University, 2017, 24(1): 203 — 216.
[18] CHEN Baokui, WANG Dongsheng, CHEN Shaolin, et al. Influence of site factors on offshore ground motions: observed Results and Numerical Simulation[J]. Soil Dynamics and Earthquake Engineering, 2021, 145: 106729.
[19] DHAKAL Y P, AOI S, KUNUGI T, et al. Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: a study at the Sagami Bay area K-NET sites in Japan[J].Earth, Planets and Space, 2017, 69(1): 1 — 7.
[20] DHAKAL Y P, KUNUGI T. An evaluation of strong-motion parameters at the S-net ocean-bottom seismograph sites near the Kanto Basin for earthquake early warning[J]. Frontiers in Earth Science, 2021, 9: 699439.
[21] DHAKAL Y P, KUNUGI T, SUZUKI W, et al. Strong motions on land and ocean bottom: comparison of horizontal PGA, PGV, and 5% damped acceleration response spectra in northeast Japan and the Japan trench area[J]. Bulletin of the Seismological Society of America, 2021, 111(6): 3237 — 3260.
[22] NAKANO M, NAKAMURA T, KAMIYA S, et al. Intensive seismic activity around the Nankai trough revealed by DONET ocean-floor seismic observations[J].Earth, Planets and Space, 2013, 65(1): 5 — 15.
[23] NAKANO M, NAKAMURA T, KAMIYA S I, et al. Seismic activity beneath the Nankai trough revealed by DONET ocean-bottom observations[J]. Marine Geophysical Research, 2014, 35(3): 271 — 284.
[24] 郑旭, 胡进军. 日本俯冲带地区典型强震数据的初步研究[J]. 低温建筑技术, 2017, 39(8): 27 — 31.
ZHENG Xu, HU Jinjun. Preliminary study on the typical strong ground motion from subduction zone earthquake in Japan[J]. Low Temperature Architecture Technology, 2017, 39(8): 27 — 31.(in Chinese)
[25] 胡进军, 郑鹏. 基于日本滨海强震数据的不同震源类型的衰减关系比较[J]. 建筑结构, 2017, 47(增刊1): 669 — 677.
HU Jinjun, ZHENG Peng. Comparison of attenuation relationships of different seismic types based on strong earthquake data in coastal areas Japan[J]. Building Structure, 2017, 47(S1): 669 — 677.(in Chinese)
[26] 谭景阳, 胡进军, 周旭彤, 等. 考虑不同分类的海底地震动特性及其不确定性分析[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(12): 1264 — 1271.
TAN Jingyang, HU Jinjun, ZHOU Xutong, et al. Characteristics and uncertainty of classified seafloor ground motion[J]. Journal of Tianjin University(Science and Technology), 2020, 53(12): 1264 — 1271.(in Chinese)
[27] 谭景阳, 胡进军, 周旭彤, 等. 海底与陆地地震动反应谱比定量分析[J]. 振动与冲击, 2021, 40(2): 213 — 219, 227.
TAN Jingyang, HU Jinjun, ZHOU Xutong, et al. Quantitative analysis on the difference of spectral ratios between offshore and onshore ground motions[J]. Journal of Vibration and Shock, 2021, 40(2): 213 — 219, 227.(in Chinese)
[28] 谭景阳, 胡进军, 谢礼立. 海域地震动长周期特性及其强度指标研究[J]. 振动与冲击, 2021, 40(3): 1 — 9, 27.
TAN Jingyang, HU Jinjun, XIE Lili. Long-period characteristics of offshore ground motion and its and intensity index[J]. Journal of Vibration and Shock, 2021, 40(3): 1 — 9, 27.(in Chinese)
[29] 刘渊, 薛梅. 利用DONET海底观测网研究日本南海海域俯冲带地震波各向异性[J]. 地震学报, 2021, 43(1): 73 — 83, 136.
LIU Yuan, XUE Mei. Seismic anisotropy within the Nankai area, Japan, using DONET seafloor observation network[J]. Acta Seismologica Sinica, 2021, 43(1): 73 — 83, 136.(in Chinese)
[30] ZHOU Y, MIAO T M, YANG J, et al. Seismic wave attenuation characteristics from the ground motion spectral analysis around the Kanto Basin[J]. Buildings, 2022, 12(3): 318.
[31] KUBO H, NAKAMURA T, SUZUKI W, et al. Site amplification characteristics at Nankai seafloor observation network, DONET1, Japan, evaluated using spectral inversion[J]. Bulletin of the Seismological Society of America, 2018, 108(3A): 1210 — 1218.
[32] HATAYTMA K. Theoretical evaluation of effects of sea on seismic ground motion[C]//Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, 2004.
[33] IIDA M, HATAYAMA K. Effects of seawater of Tokyo Bay on short-period strong ground motion[J]. Bulletin of the Seismological Society of America, 2007, 97(4): 1324 — 1333.
[34] PETUKHIN A, IWATA T, KAGAWA T. Study on the effect of the oceanic water layer on strong ground motion simulations[J]. Earth, Planets and Space, 2010, 62(8): 621 — 630.
[35] NAKAMURA T, TAKENAKA H, OKAMOTO T, et al. Seismic wavefields in the deep seafloor area from a submarine landslide source[J]. Pure and Applied Geophysics, 2014, 171(7): 1153 — 1167.
[36] NAKAMURA T, NAKANO M, HAYASHIMOTO N, et al. Anomalously large seismic amplifications in the seafloor area off the Kii peninsula[J]. Marine Geophysical Research, 2014, 35(3): 255 — 270.
[37] NAKAMURA T, TAKENAKA H, OKAMOTO T, et al. FDM simulation of seismic-wave propagation for an aftershock of the 2009 Suruga bay earthquake: effects of ocean-bottom topography and seawater layer[J]. Bulletin of the Seismological Society of America, 2012, 102(6): 2420 — 2435.
[38] NAKAMURA T, TAKENAKA H, OKAMOTO T, et al. Seismic wavefields in the deep seafloor area from a submarine landslide source[J]. Pure and Applied Geophysics, 2014, 171(7): 1153 — 1167.
[39] 李天男, 胡进军. 海底地震动作用下海洋工程地质体地震反应[J]. 佳木斯大学学报(自然科学版), 2017, 35(5): 745 — 750, 782.
LI Tiannan, HU Jinjun. Seismic response analysis of ocean engineering geology under ocean ground motions[J]. Journal of Jiamusi University(Natural Science Edition), 2017, 35(5): 745 — 750, 782.(in Chinese)
[40] 陈宝魁, 黄怡, 陈少林, 等.坡形场地对海底地震动的影响[J/OL]. 振动工程学报, 2022.http://kns.cnki.net/kcms/detail/32.1349.TB.20220214.1258.002.html
CHEN Baokui, HUANG Yi, CHEN Shaolin, et al. Influence of slope sites on offshore ground motion[J/OL]. Journal of Vibration Engineering, 2022.http://kns.cnki.net/kcms/detail/32.1349.TB.20220214.1258.002.html
[41] 周越, 陈苏, 李小军. 基于小波方法的近海域地震动时频特性分析[J]. 土木工程学报, 2016, 49(增刊1): 7 — 12.
ZHOU Yue, CHEN Su, LI Xiaojun. Wavelet-based time-frequency characteristic analysis on offshore ground motion[J]. China Civil Engineering Journal, 2016, 49(S1): 7 — 12.(in Chinese)
[42] HAO H. Input seismic motions for use in the structural response analysis[J]. WIT Trans Built Environ 1993, 3: 87 — 100.
[43] BI K M, HAO H. Modelling and simulation of spatially varying earthquake ground motions at sites with varying conditions[J]. Probabilistic Engineering Mechanics, 2012, 29: 92 — 104.
[44] LI Chao, HAO Hong, LI Hongnan, et al. Theoretical modeling and numerical simulation of seismic motions at seafloor[J]. Soil Dynamics and Earthquake Engineering, 2015, 77: 220 — 225.
[45] LI Chao, HAO Hong, LI Hongnan, et al. Modeling and Simulation of Spatially Correlated Ground Motions at Multiple Onshore and Offshore Sites[J]. Journal of Earthquake Engineering, 2017, 21(3): 359 — 383.
[46] FAN Shuli, SHI Yi, LIU Chunguang, et al. Simulation of spatially varying seafloor ground motions with random seawater layer and complex terrain[J]. Soil Dynamics and Earthquake Engineering, 2018, 111: 110 — 118.
[47] LIU Guohuan, LIU Yaqiang, FENG Xiao, et al. Simulation of spatially variable seismic underground motions in saturated double-phase media with overlying water excited by SV-wave and difference from P-wave incidence[J]. Soil Dynamics and Earthquake Engineering, 2019, 123: 144 — 161.
[48] 张小玲, 栾茂田, 郭莹, 等. 地震荷载作用下海底管线的动力反应分析[J]. 岩石力学与工程学报, 2008, 27(增刊2): 3798 — 3806.
ZHANG Xiaoling, LUAN Maotian, GUO Ying, et al. Numerical analysis of dynamic response of saturated porous seabed-pipeline under seismic loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3798 — 3806.(in Chinese)
[49] ZUO Haoran, BI Kaiming, HAO Hong, et al. Influence of earthquake ground motion modelling on the dynamic responses of offshore wind turbines[J]. Soil Dynamics and Earthquake Engineering, 2019,121: 151 — 167.
[50] 谷音, 林颖清, 黄志杨. 考虑水-土-桥梁动力相互作用的大跨桥梁地震反应分析[J]. 自然灾害学报, 2018, 27(2): 84 — 93.
GU Yin, LIN Yingqing, HUANG Zhiyang. Seismic response of bridge structures considering hydro dynamic and soil dynamic interaction[J]. Journal of Natural Disasters, 2018, 27(2): 84 — 93.(in Chinese)
[51] 王德斌, 刘驭, 张蓬勃, 等. 海底地震动作用下近海桥梁地震响应研究[J]. 世界地震工程, 2019, 35(3): 63 — 72.
WANG Debin, LIU Yu, ZHANG Pengbo, et al. Seismic response of offshore bridges under seabed seismic motion[J]. World Earthquake Engineering, 2019, 35(3): 63 — 72.(in Chinese)
[52] 陈宝魁, 卢宏飞, 宋固全, 等. 海底地震动作用下隔震桥地震反应[J]. 南昌大学学报(工科版), 2020, 42(3): 233 — 241.
CHEN Baokui, LU Hongfei, SONG Guquan, et al. Seismic response ofthe sea-crossing isolated bridge under offshore ground motion[J]. Journal of Nanchang University(Engineering & Technology), 2020, 42(3): 233 — 241.(in Chinese)
[53] 陈宝魁. 海底地震动特性及跨海桥梁地震反应分析[D]. 大连: 大连理工大学, 2016.
CHEN Baokui. Characteristics of Offshore Ground Motions and Seismic Response Analysis of Sea-Crossing Bridges[D]. Dalian: Dalian University of Technology, 2016.(in Chinese)
[54] 张琪, 郑向远, 李炜. 海陆地震动的时频域工程特性对比[J]. 哈尔滨工业大学学报, 2020, 52(8): 38 — 45.
ZHANG Qi, ZHENG Xiangyuan, LI Wei. Comparison of temporal and spectral features of offshore and onshore ground motions[J]. Journal of Harbin Institute of Technology, 2020, 52(8): 38 — 45.(in Chinese)
[55] 陈苏, 周越, 李小军, 等. 近海域地震动的时频特征与工程特性[J]. 振动与冲击, 2018, 37(16): 227 — 233.
CHEN Su, ZHOU Yue, LI Xiaojun, et al. Time-frequency and engineering characteristics on offshore ground motion[J]. Journal of Vibration and Shock, 2018, 37(16): 227 — 233.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2021-11-20; 修回日期:2022-08-08
基金项目:国家自然科学基金(51868048, 52268076, 51778206); 中国地震局工程力学研究所基本科研业务费专项资助项目(2018D18)
作者简介:陈宝魁(1982 —),男,副教授,硕士生导师,主要从事海底地震动特性及桥梁抗震研究.E-mail:baokui_2000@163. com
通讯作者:王东升(1974 —),男,教授,博导,研究方向为桥梁及结构工程抗震.E-mail: dswang@hebut.edu.cn
更新日期/Last Update: 1900-01-01