[1](刘同同,杨玉萍,李朝阳,等.地震动强度参数相关性对地震滑坡危险性影响分析[J].世界地震工程,2023,39(02):011-19.[doi:10.19994/j.cnki.WEE.2023.0025 ]
 (LIU Tongtong,YANG Yuping,LI Zhaoyang,et al.Analysis of the influence of the correlation of ground motion parameters on earthquake-induced landslide hazard[J].,2023,39(02):011-19.[doi:10.19994/j.cnki.WEE.2023.0025 ]
点击复制

地震动强度参数相关性对地震滑坡危险性影响分析
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年02期
页码:
011-19
栏目:
专栏:地震灾害风险评估和区划与情景构建
出版日期:
2023-05-15

文章信息/Info

Title:
Analysis of the influence of the correlation of ground motion parameters on earthquake-induced landslide hazard
文章编号:
1007-6069(2023)02-0011-09
作者:
(刘同同1杨玉萍1李朝阳2程 印1)
1. 西南交通大学 土木工程学院,四川 成都 610031; 2. 四川省公路规划勘察设计研究院有限公司,四川 成都 610041
Author(s):
(LIU Tongtong1 YANG Yuping1 LI Zhaoyang2 CHENG Yin1)
1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China;2. Sichuan Highway Planning Survey Design and Research Institute LTD, Chengdu 610041, China
关键词:
地震滑坡危险性 地震动强度参数 相关性 蒙特卡罗模拟
Keywords:
seismic landslide hazard ground motion intensity measures correlation Monte-Carlo simulation
分类号:
P315
DOI:
10.19994/j.cnki.WEE.2023.0025
文献标志码:
A
摘要:
本文基于全概率地震滑坡危险性分析方法,利用蒙特卡罗模拟研究在不同临界屈服加速度ac、永久位移模型、场地类别和断层距情况下,地震动强度参数相关性对地震滑坡危险性结果的影响规律。主要结果表明:在进行滑坡危险性分析时,不考虑多地震动强度参数相关性会造成预测位移值偏小,滑坡风险被低估。因此,考虑地震动强度参数相关性对滑坡危险性评价很有必要,这能使预测结果反映地震动参数样本作为输入时的实际相关性特征,为合理进行滑坡防护提供理论依据和参考。
Abstract:
Based on the full probability seismic landslide hazard analysis method utilizing Monte-Carlo simulation, this study discusses the impacts of the correlation among ground motion intensity parameters on the earthquake-induced landslide hazard assessment under different critical yield accelerations(ac), permanent displacement models, site types, and fault distances. The main conclusions show that: in the earthquake-induced landslide hazard analysis, ignoring the correlation of multiple ground motion intensity parameters will cause the predicted displacement value to be unconservative and the landslide hazard to be underestimated. Accordingly, it is vital to consider the correlation of ground motion intensity parameters for earthquake-induced landslide hazard assessment, which makes the prediction results reflect the actual correlation characteristics of ground motion parameter samples as input, and provides a theoretical basis and reference for reasonable landslide protection.

参考文献/References:

[1] YIN Y P, WANG F W, SUN P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152.
[2] NEWMARK N M. Effects of earthquakes on dams and embankments[J]. Géotechnique, 1965, 15(2): 139-160.
[3] 雷真, 李林锐, 隆交凤, 等. 基于降雨入渗的Newmark模型改进及地震滑坡危险性预测研究[J]. 地震工程学报,2022,44(3):527-534.
LEI Zhen, LI Linrui, LONG Jiaofeng, et al. Improvement of Newmark model and prediction of earthquake landslide risk based on rainfall infiltration[J].China Earthquake Engineering Journal, 2022,44(3):527-534.(in Chinese)
[4] JIBSON R W. Regression models for estimating coseismic landslide displacement[J]. Engineering Geology, 2007, 91(2/3/4):209-218.
[5] 陈启国, 葛华, 周洪福. 利用Newmark方法进行地震滑坡制图——以映秀研究区为例[J]. 中国煤炭地质, 2011, 23(11): 44-48, 56.
CHEN Qiguo, GE Hua, ZHOU Hongfu. Mapping of seismic triggered landslide through newmark method—An example from study area Yingxiu[J]. Coal Geology of China, 2011, 23(11): 44-48, 56.(in Chinese)
[6] 葛华, 陈启国, 王德伟. 地震滑坡危险性评价及编图——以映秀震中区为例[J]. 中国地质, 2013, 40(2): 644-652.
GE Hua, CHEN Qiguo, WANG Dewei. The assessment and mapping of seismic landslide hazards: A case study of Yingxiu area, Sichuan Province[J]. Geology in China, 2013, 40(2): 644-652.(in Chinese)
[7] 刘甲美, 王涛, 石菊松, 等. 四川九寨沟Ms7.0级地震滑坡应急快速评估[J]. 地质力学学报, 2017, 23(5): 639-645.
LIU Jiamei, WANG Tao, SHI Jusong, et al. Emergency rapid assessment of landslides induced by the Jiuzhaigou Ms7.0 earthquake, Sichuan, China[J]. Journal of Geomechanics, 2017, 23(5): 639-645.(in Chinese)
[8] 徐光兴, 姚令侃, 李朝红, 等. 基于汶川地震强震动记录的边坡永久位移预测模型[J]. 岩土工程学报, 2012, 34(6): 1131-1136.
XU Guangxing, YAO Lingkan, LI Chaohong, et al. Predictive models for permanent displacement of slopes based on recorded strong-motion data of Wenchuan Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1131-1136.(in Chinese)
[9] LEE R, KIREMIDJIAN A S. Uncertainty and correlation for loss assessment of spatially distributed systems[J]. Earthquake Spectra, 2007, 23(4): 753-770.
[10] GODA K, HONG H P. Spatial correlation of peak ground motions and response spectra[J]. Bulletin of the Seismological Society of America, 2008, 98(1): 354-365.
[11] SOKOLOV V, WENZEL F. Influence of ground-motion correlation on probabilistic assessments of seismic hazard and loss: sensitivity analysis[J]. Bulletin of Earthquake Engineering, 2011, 9(5): 1339-1360.
[12] DU W Q, WANG G. A one-step Newmark displacement model for probabilistic seismic slope displacement hazard analysis[J]. Engineering Geology, 2016, 205: 12-23.
[13] SAYGILI G, RATHJE E M. Empirical predictive models for earthquake-induced sliding displacements of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(6): 790-803.
[14] SONG J, RODRIGUEZ-MAREK A. Sliding displacement of flexible earth slopes subject to near-fault ground motions[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(3): 0001233.
[15] WANG M X, HUANG D R, WANG G, et al. SS-XGBoost: a machine learning framework for predicting newmark sliding displacements of slopes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020074.
[16] Arias A. Measure of Earthquake Intensity. 1970, Massachusetts Inst. of Tech, Cambridge. Univ. of Chile, Santiago de Chile.
[17] DU W Q, WANG G. Fully probabilistic seismic displacement analysis of spatially distributed slopes using spatially correlated vector intensity measures[J]. Earthquake Engineering & Structural Dynamics, 2014, 43(5): 661-679.
[18] 李雪婧, 高孟潭, 徐伟进. 基于Newmark模型的概率地震滑坡危险性分析方法研究——以甘肃天水地区为例[J]. 地震学报, 2019, 41(6): 795-808.
LI Xuejing, GAO Mengtan, XU Weijin. Probabilistic seismic slope displacement hazard analysis based on Newmark displacement model: Take the area of Tianshui, Gansu Province, China as an example[J]. Acta Seismologica Sinica, 2019, 41(6): 795-808.(in Chinese)
[19] SEYHAN E, STEWART J P. Semi-empirical nonlinear site amplification from NGA-West2 data and simulations[J]. Earthquake Spectra, 2014, 30(3): 1241-1256.
[20] Page, E., Monte Carlo Methods. 1964, Wiley Online Library.
[21] 潘华, 高孟潭, 谢富仁. 新版地震区划图地震活动性模型与参数确定[J]. 震灾防御技术, 2013, 8(1): 11-23.
PAN Hua, GAO Mengtan, XIE Furen. The earthquake activity model and seismicity parameters in the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention, 2013, 8(1): 11-23.(in Chinese)
[22] 郭增建,秦保燕.用发震构造显示的构造规模来估计地震的最大强度[R].酒钢地震考察报告, 1965.
GUO Zengjian, QIN Baoyan. Estimation of the maximum intensity of earthquakes by the scale of seismogenic structures [R]. Jsteel Seismic Survey Report, 1965.(in chinese)
[23] CAMPBELL K W, BOZORGNIA Y. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra[J]. Earthquake Spectra, 2014, 30(3): 1087-1115.
[24] BRADLEY B A. Correlation of Arias intensity with amplitude, duration and cumulative intensity measures[J]. Soil Dynamics and Earthquake Engineering, 2015, 78: 89-98.
[25] BRADLEY B A. Empirical correlations between peak ground velocity and spectrum-based intensity measures[J]. Earthquake Spectra, 2012, 28(1): 17-35.

备注/Memo

备注/Memo:
收稿日期:2022-08-16; 修回日期:2023-01-04
基金项目:国家自然科学基金青年项目(51708460); 四川省科技厅重点研发项目(2021YFS0320); 四川省交通运输科技项目(2021-WX-06)
作者简介:刘同同(1996—),男,硕士研究生,主要从事地震滑坡危险性研究.E-mail:liutongtong@my.swjtu.edu.cn

更新日期/Last Update: 1900-01-01