[1](王会娟,王 平,郭利军,等.不同类型黄土场地地震诱发灾害分析[J].世界地震工程,2023,39(02):020-30.[doi:10.19994/j.cnki.WEE.2023.0026 ]
 (WANG Huijuan,WANG Ping,GUO Lijun,et al.Analysis of seismic hazards by different types of loess sites[J].,2023,39(02):020-30.[doi:10.19994/j.cnki.WEE.2023.0026 ]
点击复制

不同类型黄土场地地震诱发灾害分析
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年02期
页码:
020-30
栏目:
专栏:地震灾害风险评估和区划与情景构建
出版日期:
2023-05-15

文章信息/Info

Title:
Analysis of seismic hazards by different types of loess sites
文章编号:
1007-6069(2023)02-0020-11
作者:
(王会娟123王 平123郭利军4钱紫玲3柴少峰123夏晓雨123)
1. 甘肃兰州地球物理国家野外科学观测研究站,甘肃 兰州 730000; 2. 河北省地震灾害防御与风险评价重点实验室, 河北 三河 065201; 3. 中国地震局兰州地震研究所,甘肃 兰州 730000; 4. 内蒙古能源集团有限公司乌斯太热电厂,内蒙古 阿拉善盟 750336
Author(s):
(WANG Huijuan123 WANG Ping123 GUO Lijun4 QIAN Ziling3 CHAI Shaofeng123 XIA Xiaoyu123)
1. Gansu Lanzhou Geophysics National Observation and Research Station, Lanzhou 730000, China; 2. Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, Sanhe 065201, China; 3. Lanzhou Institute of Seismology, China Earthquake Administration, Lanzhou 730000, China;4. Wustai Thermal Power Plant of Inner Mongolia Energy Power Generation Investment Group Co. LTD, Alxa League 750336, China
关键词:
黄土场地 数值模拟 震陷 滑坡 动力响应
Keywords:
loess numerical simulation arthquake subsidence landslide dynamic response
分类号:
TU435
DOI:
10.19994/j.cnki.WEE.2023.0026
文献标志码:
A
摘要:
基于FLAC3D数值模拟方法,建立不同类型的黄土场地计算模型,研究地震动强度和频率对不同类型黄土场地的动力响应特征和变形规律,分析不同类型黄土场地地震动响应的差异性,揭示不同类型黄土场地诱发的地震灾害,结合理论分析验证数值模拟结果的可靠性。研究表明:黄土-泥岩接触型二元结构斜坡极易发生滑动破坏引起斜坡失稳,并且在坡肩位置引起较为明显的动力响应,加速度放大系数是坡顶的2倍左右,是一元结构黄土斜坡相同部位加速度放大系数的1.5倍左右; 黄土斜坡临空面的存在会引起土体沿坡面发生一定范围的滑动和堆积,黄土塬内较塬边更为稳定,不易发生损伤破坏; 低频地震波对平坦场地的地震响应影响明显,随着高程的增加,频带宽度增加,傅里叶谱幅值增加,坡肩处的幅值是坡脚的2倍左右; 黄土斜坡场地易诱发大面积的滑坡灾害,黄土塬场地在剪切力和压张破坏条件下易诱发局部震陷灾害。
Abstract:
Based on FLAC3D numerical simulation method, different types of loess site calculation models were established, under different conditions of ground motion intensity and frequency, the dynamic response characteristics and deformation rules on different types of loess sites were studied, to reveal the seismic disasters induced by different types of loess sites, the reliability of numerical simulation results was verified by theoretical analysis.The results show that the sliding failure of the loess-mudstone contact type slope is easy, and the dynamic response is obvious at the slope shoulder. The acceleration amplification coefficient is about 2 times that of the top of the slope, the two-element structure is about 1.5 times the acceleration amplification factor of the same part of the loess slope. The existence of free surface of loess slope will cause the soil to slip and accumulate along the slope in a certain range, the loess tableland is more stable than the margin of the tableland, and it is less prone to damage and destruction. The low-frequency seismic wave has obvious influence on the seismic response of the flat site. The amplitude at the slope shoulder is about twice that at the slope toe. The loess slope site is easy to induce large scale landslide disaster, and the loess tableland site is easy to induce local earthquake subsidence disaster under the conditions of shear force and compression failure.

参考文献/References:

[1] 吴志坚. 汶川地震场地条件对地震动放大效应的影响[C]∥第八届全国地震工程学术会议论文集(Ⅰ). 重庆, 2010: 180-183.
[2] 杨柏坡, 杨笑梅. 复杂场地上结构地震反应的研究[J]. 地震工程与工程振动, 1997, 17(2): 10-15.
YANG Baipo,YANG Xiaomei. Seismic response of structures on complex sites[J]. Earthquake Engineering and Engineering Dynamics, 1997, 17(2): 10-15.(in Chinese)
[3] HARTZELL S H, CARVER D L, KING K W. Initial investigation of site and topographic effects at Robinwood Ridge, California[J].Bulletin of the Seismological Society of America, 1994, 84(5): 1336-1349.
[4] PEDERSEN H A, LE BRUN B, HATZFELD D, et al. Ground-motion amplitude across ridges[J]. Bulletin of the Seismological Society of America, 1994, 84(6): 1786-1800.
[5] PEDERSEN H A, et al. Three-dimensional scattering by two-dimensional topographies [J]. Bulletin of the Seismological Society of America, 1994, 84(4): 1169-1183.
[6] ASHFORD S A, SITAR N. Analysis of topographic amplification of inclined shear waves in a steep coastal bluff[J]. Bulletin of the Seismological Society of America, 1997, 87(3): 692-700.
[7] ASHFORD S A, SITAR N.Topographic amplification in the 1994 Northridge earthquake:Analysis and observations[A]. 6th U.S National Conference on Earhtaquake Engineering[C]. 1997.
[8] ASHFORD S, SITAR N, LYSMER J, et al. Topographic effects on the seismic response of steep slopes[J]. Bulletin of the Seismological Society of America, 1997, 87(3):701-709.
[9] 车伟, 罗奇峰. 复杂地形条件下地震波的传播研究[J]. 岩土工程学报, 2008, 30(9): 1333-1337.
CHE Wei, LUO Qifeng. Seismic wave propagation in complex topography[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(9): 1333-1337.(in Chinese)
[10] 王平, 王会娟, 许书雅, 等. 黄土-风化岩接触面型斜坡动力响应研究[J]. 中国矿业大学学报, 2018, 47(4): 893-899.
WANG Ping, WANG Huijuan, XU Shuya, et al. Dynamic response of loess-weathered rock contact surface slope[J]. Journal of China University of Mining & Technology, 2018, 47(4): 893-899.(in Chinese)
[11] 王平, 王会娟, 柴少峰, 等. 黄土–风化岩接触面斜坡滑移面衍生机制及变形特征[J]. 岩石力学与工程学报, 2018, 37(增刊2): 4027-4037.
WANG P, WANG H J, CHAI S F, et al. The derived mechanism and deformation characteristics of slip surface of loessweathered rock contact surface slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Suppl.2): 4027-4037.(in Chinese)
[12] 袁丽侠. 场地土对地震波的放大效应[J]. 世界地震工程, 2003, 19(1): 113-120.
YUAN Lixia. The amplifying effect of ground soil to earthquake wave[J]. World Earthquake Engineering, 2003, 19(1): 113-120.(in Chinese)
[13] 李思东. 三维地形的地震反应分析研究[D]. 成都: 西南交通大学,
LI Sidong. Study on seismic response analysis of three-dimensional terrain[D].Chengdu: Southwest Jiaotong University,.(in Chinese)
[14] 王会娟, 王平, 于一帆, 等. 复杂土层结构黄土场地地震动反应特性[J]. 自然灾害学报, 2018, 27(6): 75-82.
WANG Huijuan, WANG Ping, YU Yifan, et al. The effect of complex soil structure loess field on earthquake ground motion[J]. Journal of Natural Disasters, 2018, 27(6): 75-82.(in Chinese)
[15] 兰景岩, 宋锡俊, 刘娟, 等. 地震作用下中硬自由场放大效应随深度的变化规律研究[J]. 岩石力学与工程学报, 2020, 39(增刊2): 3696-3705.
LAN J Y, SONG X J, LIU J, et al. Study on the variation ground motion amplification effect of medium-hard free fields with depth under earthquake action[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(Suppl.2): 3696-3705.(in Chinese)
[16] COLLIER C J, ELNASHAI A S. A procedure for combining vertical and horizontal seismic action effects[J]. Journal of Earthquake Engineering, 2001, 5(4): 521-539.
[17] ATHANASOPOULOS G A, PELEKIS P C, LEONIDOU E A. Effects of surface topography on seismic ground response in the Egion(Greece)15 June 1995 earthquake[J]. Soil Dynamics and Earthquake Engineering, 1999, 18(2): 135-149.
[18] CELEBI M. Topographical and geological amplifications determined from strong-motion and aftershock records of the 3March 1985 Chile carthquake[J]. Bulletin of the Seismological Society of America, 1987, 77(4):1147-1167.
[19] 张振中, 郑恒利, 王兰民. 黄土随机振动强度参数在地震滑坡分析中的应用[J]. 西北地震学报, 1991(3): 45-49.
ZHANG Z Z, ZHENG H L, WANG L M. Application of loess strength parameters under random vibration in analysis of seismic landslides[J]. Northwestern Seismological Journal, 1991(3): 45-49.(in Chinese)
[20] 邹谨敞, 邵顺妹. 海原地震滑坡及其分布特征探讨[J]. 内陆地震, 1996, 10(1): 1-6.
ZOU J C, SHAO S M. Characteristics of Haiyuan earthquake landslide and its distribution[J]. Inland Earthquake, 1996, 10(1): 1-6.(in Chinese)
[21] SCHRERE R L. Lealing and fluudzation in air layer lubricated avalanches. CGeol Soc American Buletin,1968,79.
[22] SASSA R. Mcasurement of the apparent friction ange during rapid badng by the tiglr speed high stress ring shear apparatus— tr terpretation of the relationship between landdide volume and the apparent friction during mation. In: David H Bell(editor). Landdide.1991,1: 545-552.
[23] 王家鼎, 张倬元. 地震诱发高速黄土滑坡的机理研究[J]. 岩土工程学报, 1999, 21(6): 670-674.
WANG J D, ZHANG Z. A study on the mechanism of high speed loess landslide induced by earthquake[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 670-674.(in Chinese)
[24] 陈育民, 徐鼎平. FLAC/FLAC3D基础与工程实例[M]. 2版. 北京: 中国水利水电出版社, 2013.
CHEN Yumin, XU Dingping. FLAC/FLAC3D Foundation and Engineering Example[M]. 2nd ed. Beijing: China Water & Power Press, 2013.(in Chinese)
[25] LYSMER J, KUHLEMEYER R. Finite dynamic model for infinite media[J]. Journal of Engineering Mechanics-Asce, 1969, 95: 859-877.

相似文献/References:

[1]夏坤,董林,石玉成,等.地表水下渗对典型黄土场地地震效应的影响[J].世界地震工程,2013,(02):145.
 XIA Kun,DONG Lin,SHI Yucheng,et al.Effect of surface water permeation on earthquake response of loess sites[J].,2013,(02):145.
[2]鄢生全,邵晨曦,曹飒飒.SMA负刚度双曲面减震装置的优化及抗震性能研究[J].世界地震工程,2023,39(01):100.[doi:10.19994/j.cnki.WEE.2023.0011]
 YAN Shengquan,SHAO Chenxi,CAO Sasa.Optimization and seismic performance of SMA-based negative stiffness isolation device[J].,2023,39(02):100.[doi:10.19994/j.cnki.WEE.2023.0011]
[3]陈宝魁,王博为,王东升.海底强震观测记录与地震动特性研究进展[J].世界地震工程,2023,39(01):200.[doi:10.19994/j.cnki.WEE.2023.0022]
 CHEN Baokui,WANG Bowei,WANG Dongsheng.Review of offshore strong earthquake observation records and ground motion characteristics[J].,2023,39(02):200.[doi:10.19994/j.cnki.WEE.2023.0022]
[4](佘芳涛,李 超,周庆怡,等.加高扩容贮灰场地震响应特性及其稳定性评价[J].世界地震工程,2023,39(02):062.[doi:10.19994/j.cnki.WEE.2023.0030 ]
 (SHE Fangtao,LI Chao,ZHOU Qingyi,et al.Seismic response characteristics and stability evaluation of heightened and expanded ash storage field[J].,2023,39(02):062.[doi:10.19994/j.cnki.WEE.2023.0030 ]

备注/Memo

备注/Memo:
收稿日期:2022-11-28; 修回日期:2023-03-09
基金项目:河北省地震灾害防御与风险评价重点实验室开放基金资助项目(FZ223203); 甘肃省地震局地震科技发展基金(2021Y14); 中国地震局地震预测研究所基本科研业务费专项(2020IESLZ07)
作者简介:王会娟(1992—),女,助理研究员,主要从事地震工程研究. E-mail:1633487821@qq.com

更新日期/Last Update: 1900-01-01