[1](葛超洋,孙治国,付建宇,等.近断层地震动下摇摆-自复位桥墩连续梁地震反应[J].世界地震工程,2023,39(02):113-124.[doi:10.19994/j.cnki.WEE.2023.0035 ]
 (GE Chaoyang,SUN Zhiguo,FU Jianyu,et al.Seismic response of continuous beam bridge with rocking-self-centering columns under near-fault ground motion[J].,2023,39(02):113-124.[doi:10.19994/j.cnki.WEE.2023.0035 ]
点击复制

近断层地震动下摇摆-自复位桥墩连续梁地震反应
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年02期
页码:
113-124
栏目:
常规论文
出版日期:
2023-05-15

文章信息/Info

Title:
Seismic response of continuous beam bridge with rocking-self-centering columns under near-fault ground motion
文章编号:
1007-6069(2023)02-0113-12
作者:
(葛超洋1孙治国2付建宇1王东升1)
1. 河北工业大学 土木与交通学院,天津 300401; 2. 防灾科技学院 中国地震局建筑物破坏机理与防御重点实验室,河北 三河 065201
Author(s):
(GE Chaoyang1 SUN Zhiguo2 FU Jianyu1 WANG Dongsheng1)
1. College of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China; 2. Key Laboratory of Building Collapse Mechanism and Disaster Prevention,Institute of Disaster Prevention, China Earthquake Administration, Sanhe 065201, China
关键词:
连续梁桥 摇摆-自复位桥墩 非线性时程分析 近断层地震动 试验
Keywords:
continuous beam bridges rocking self-centering columns nonlinear time-history analysis near-fault ground motions test
分类号:
TU352
DOI:
10.19994/j.cnki.WEE.2023.0035
文献标志码:
A
摘要:
为讨论近断层地震动下摇摆-自复位(Rocking Self-Centering, RSC)桥墩连续梁的地震反应及其抗震优缺点。基于OpenSees有限元分析平台讨论了RSC桥墩三维建模方法,通过对6个试验构件的模拟,比较模拟与试验桥墩滞回曲线、预应力筋最大应力等指标,验证了模型准确性。建立设置RSC桥墩和普通钢筋混凝土(Reinforced Concrete, RC)桥墩的上部结构相同的两座连续梁桥,输入3组含有强速度脉冲的近断层地震波进行非线性动力时程分析,对比其抗震性能。结果表明:在0.4 g近断层地震动下,RSC桥墩与普通RC桥墩相比,RSC桥墩的最大位移角为普通RC桥墩的78.1%~97.6%,墩底曲率延性系数仅为普通RC桥墩的24.0%~34.0%,减小了桥墩的最大变形,也减轻了桥墩地震损伤,不利的一点是使用RSC桥墩会导致支座位移增大。RSC桥墩震后的残余位移较小,且预应力筋处于弹性受力阶段,为实现震后桥梁功能的快速恢复提供了条件。
Abstract:
The seismic response of a continuous girder bridges with rocking self-centering columns(RSC)under near-fault ground motions is discussed in this paper, aiming at discovering the advantage of the RSC columns under strong earthquake. Based on the OpenSees finite element analysis platform, the modeling method of the three-dimensional model of RSC column is developed. Through comparison of the test results amd the simulation of six test specimens' hysteresis curve, the maximum stress of the prestressed tendons and so on, the accuracy of the model is verified. Then, two continuous girder bridges, one with RSC columns and the other with ordinary reinforced concrete(RC)columns, are established. The results show that under 0.4 g near-fault ground motions, compared with ordinary RC columns, the maximum displacement ratio of RSC columns is 78.1%~97.6% of that of ordinary RC columns, and the curvature ductility coefficient at the bottom section of the column is only 24.0%~34.0% of that of ordinary RC columns. RSC columns reduces the maximum deformation as well as the seismic damage. The shortcoming of RSC columns is that they increase of bearing displacement response. The residual displacement of RSC column after earthquake is small, and the prestressed tendons are in the elastic stage, which will bring some benefits for rapid recovery of bridge function after earthquake.

参考文献/References:

[1] 韩强, 贾振雷, 何维利, 等. 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017, 30(12): 169-177.
HAN Qiang, JIA Zhenlei, HE Weili, et al. Seismic design method and its engineering application of self-centering double-column rocking bridge[J]. China Journal of Highway and Transport, 2017, 30(12): 169-177.(in Chinese)
[2] FILIATRAULT A, RESTREPO J, CHRISTOPOULOS C. Development of self-centering earthquake resisting systems[C]∥13th World Conference on Earthquake Engineering. BC, Canada:WCEE Vancouver, 2004: 1-6.
[3] 司炳君, 陈灿, 孙治国, 等. 无黏结预应力RC桥墩抗震性能的数值分析[J]. 地震工程与工程振动, 2014, 34(3): 68-76.
SI Bingjun, CHEN Can, SUN Zhiguo, et al. Numerical analysis of the seismic performance of unbonded prestressed RC bridge piers[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(3): 68-76.(in Chinese)
[4] 何铭华, 辛克贵, 郭佳. 新型自复位桥梁墩柱节点的局部稳定性研究[J]. 工程力学, 2012, 29(4): 122-127.
HE Minghua, XIN Kegui, GUO Jia. Local stability study of new bridge piers with self-centering joints[J]. Engineering Mechanics, 2012, 29(4): 122-127.(in Chinese)
[5] HOUSNER G W. The behavior of inverted pendulum structures during earthquakes[J]. Bulletin of the Seismological Society of America, 1963, 53(2): 403-417.
[6] 王志强, 葛继平, 魏红一. 东海大桥预应力混凝土桥墩抗震性能分析[J]. 同济大学学报(自然科学版), 2008, 36(11): 1462-1466, 1500.
WANG Zhiqiang, GE Jiping, WEI Hongyi. Seismic performance of prestressed concrete bridge column of East Sea bridge[J]. Journal of Tongji University(Natural Science), 2008, 36(11): 1462-1466, 1500.(in Chinese)
[7] 司炳君, 谷明洋, 孙治国, 等. 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34(10): 87-97.
SI Bingjun, GU Mingyang, SUN Zhiguo, et al. Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions[J]. Engineering Mechanics, 2017, 34(10): 87-97.(in Chinese)
[8] PALERMO A, PAMPANIN S, MARRIOTT D. Design, modeling, and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J]. Journal of Structural Engineering, 2007, 133(11): 1648-1661.
[9] PALERMO A, PAMPANIN S, CALVI G M. Concept and development of hybrid solutions for seismic resistant bridge systems[J]. Journal of Earthquake Engineering, 2005, 9(6): 899-921.
[10] CALVI G, PALERMO A G, PAMPANIN S. Use of "controlled rocking" in the seismic design of bridges[C]∥Proceedings of the 13th World Conference on Earthquake Engineering. 2005: 1-16.
[11] MARRIOTT D, PAMPANIN S, PALERMO A. Quasi-static and pseudo-dynamic testing of unbonded post-tensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(3): 331-354.
[12] MARRIOTT D, PAMPANIN S, PALERMO A. Biaxial testing of unbonded post-tensioned rocking bridge piers with external replacable dissipaters[J]. Earthquake Engineering & Structural Dynamics, 2011, 40(15): 1723-1741.
[13] 郭佳, 辛克贵, 何铭华, 等. 自复位桥梁墩柱结构抗震性能试验研究与分析[J]. 工程力学, 2012, 29(增刊1): 29-34, 45.
GUO Jia, XIN Kegui, HE Minghua, et al. Experimental study and analysis on the seismic performance of a self-centering bridge pier[J]. Engineering Mechanics, 2012, 29(Suppl.1): 29-34, 45.(in Chinese)
[14] 葛继平, 王志强, 魏红一. 干接缝节段拼装桥墩抗震分析的纤维模型模拟方法[J]. 振动与冲击, 2010, 29(3): 52-57, 203.
GE Jiping, WANG Zhiqiang, WEI Hongyi. Seismic performance analysis of segmental bridge columns with match-cast dry joints using fiber beam-column element method[J]. Journal of Vibration and Shock, 2010, 29(3): 52-57, 203.(in Chinese)
[15] 葛继平, 王志强. 干接缝节段拼装桥墩集中塑性铰模型的地震响应分析[J]. 工程力学, 2010, 27(8): 185-190.
GE Jiping, WANG Zhiqiang. Seismic performance studies of segmental bridge columns with match-cast dry joints using concentrated plastic hinge method[J]. Engineering Mechanics, 2010, 27(8): 185-190.(in Chinese)
[16] 孙治国, 赵泰儀, 石岩, 等. 摇摆-自复位桥墩抗震性能数值建模方法研究[J]. 应用基础与工程科学学报, 2019, 27(6): 1357-1369.
SUN Zhiguo, ZHAO Taiyi, SHI Yan, et al. Research on numerical modeling method for rocking self-centering bridge piers[J]. Journal of Basic Science and Engineering, 2019, 27(6): 1357-1369.(in Chinese)
[17] 钟正午, 石岩, 秦洪果, 等. 摇摆-自复位桥墩的多弹簧模型建模方法研究[J]. 世界地震工程, 2021, 37(4): 197-205.
ZHONG Zhengwu, SHI Yan, QIN Hongguo, et al. Simulation method for multi-spring model of rocking self-centering pier[J]. World Earthquake Engineering, 2021, 37(4): 197-205.(in Chinese)
[18] MANDER J, CHENG C T.Seismic resistance of bridge piers based on damage avoidance design[R]. Technical Report NCEER. 1997: 109-109.
[19] OU Y C, WANG P H, TSAI M S, et al. Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J]. Journal of Structural Engineering, 2010, 136(3): 255-264.
[20] GUNAY S, HU F, MOSALAM K, et al. Blind prediction of shaking table tests of a new bridge bent design[J]. PEER Reports, 2020, 9.
[21] BOZORGZADEH A, MEGALLY S, RESTREPO J, et al. Seismic response of sacrificial exterior shear keys in bridge abutments[J]. Ssrp, 2007, 4: 14.
[22] SILVA P F, MEGALLY S, SEIBLE F. Seismic performance of sacrificial exterior shear keys in bridge abutments[J]. Earthquake Spectra, 2009, 25(3): 643-664.
[23] WILSON P, ELGAMAL A. Large scale measurement of lateral earth pressure on bridge abutment back-wall subjected to static and dynamic loading[C]∥Proceedings of the New Zealand Workshop on Geotechnical Earthquake Engineering. 2006: 307-315.
[24] DUNCAN J M, MOKWA R L. Passive earth pressures: theories and tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 248-257.
[25] SHAMSABADI A, ROLLINS K M, KAPUSKAR M. Nonlinear soil-abutment-bridge structure interaction for seismic performance-based design[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(6): 707-720.
[26] 高玉峰, 蒲黔辉, 李晓斌. 考虑碰撞效应的双柱式高墩桥梁非线性地震反应特性研究[J]. 公路交通科技, 2011, 28(4): 36-45.
GAO Yufeng, PU Qianhui, LI Xiaobin. Nonlinear seismic response characteristics of bridge with double-column high-rise piers considering pounding effect[J]. Journal of Highway and Transportation Research and Development, 2011, 28(4): 36-45.(in Chinese)
[27] 李宏男, 成虎, 王东升. 桥梁结构地震易损性研究进展述评[J]. 工程力学, 2018, 35(9): 1-16.
LI Hongnan, CHENG Hu, WANG Dongsheng. A review of advances in seismic fragility research on bridge structures[J]. Engineering Mechanics, 2018, 35(9): 1-16.(in Chinese)

相似文献/References:

[1]徐建国,刘翔,王博,等.地震作用下大跨度连续梁桥半主动变阻尼控制研究[J].世界地震工程,2010,(01):184.
 XU Jianguo,LIU Xiang,WANG Bo,et al.The study of semi-active control with variable dampes of large-scale continuous bridge under earthquakes[J].,2010,(02):184.
[2]张永亮,陈兴冲,颜志华.Lock-up装置在连续梁桥上的减震性能研究[J].世界地震工程,2010,(02):048.
 ZHANG Yongliang,CHEN Xingchong,YAN Zhihua.Research on seismic reduction performance of lock-up device applied to continuous girder bridge[J].,2010,(02):048.
[3]周光伟,李建中,陈昌萍,等.行波输入下连续梁桥纵向墩梁相对位移碰撞效应分析[J].世界地震工程,2012,(04):051.
 ZHOU Guangwei,LI Jianzhong,CHEN Changping,et al.Analysis of longitudinal pounding due to relative displacement between pier top and girder of continuous girder bridge under input of traveling wave[J].,2012,(02):051.
[4]易莉帮,李建中.连续梁桥纵向阻挡型限位装置防落梁效果分析[J].世界地震工程,2016,(02):238.
 YI Libang,LI Jianzhong.Analysis of unseating-prevention effect of longitudinal blocking restrainers in continuous girder bridges[J].,2016,(02):238.
[5]刘正楠,陈兴冲,马华军,等.高速铁路大跨长联连续梁桥减隔震方案优化研究[J].世界地震工程,2017,33(04):129.
 LIU Zhengnan,CHEN Xingchong,MA Huajun,et al.Optimization research on the seismic isolation schemes of a long unit and large span continuous bridge on high-speed railway[J].,2017,33(02):129.
[6]黎子荣,刘立鹏,张杨怡,等.速度锁定型自复位防屈曲支撑对桥梁的影响规律研究[J].世界地震工程,2020,(02):146.
 LI Zirong,LIU Lipeng,ZHANG Yangyi,et al.Research on the influence law of Lock-Up Self-Centering Buckling-Restrained Braces on bridge performance[J].,2020,(02):146.

备注/Memo

备注/Memo:
收稿日期:2022-11-05; 修回日期:2023-01-18
基金项目:国家自然科学基金项目(52178473,51978167)
作者简介:葛超洋(1996—),男,硕士研究生,主要从事桥梁抗震研究. E-mail:gechaoyang1996@163.com

更新日期/Last Update: 1900-01-01