[1](郭亚茹,丰继华,杨黎薇,等.基于改进的希尔伯特-黄变换的地震强震动特征提取[J].世界地震工程,2023,39(02):138-147.[doi:10.19994/j.cnki.WEE.2023.0037 ]
 (GUO Yaru,FENG Jihua,YANG Liwei,et al.Feature extraction of strong ground motion based on improved Hilbert-Huang Transform[J].,2023,39(02):138-147.[doi:10.19994/j.cnki.WEE.2023.0037 ]
点击复制

基于改进的希尔伯特-黄变换的地震强震动特征提取
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年02期
页码:
138-147
栏目:
常规论文
出版日期:
2023-05-15

文章信息/Info

Title:
Feature extraction of strong ground motion based on improved Hilbert-Huang Transform
文章编号:
1007-6069(2023)02-0138-10
作者:
(郭亚茹1丰继华2杨黎薇1钟玉盛1)
1. 云南省地震局, 昆明 650224; 2. 云南民族大学,昆明 650031
Author(s):
(GUO Yaru1 FENG Jihua2 YANG Liwei1 ZHONG Yusheng1)
1. Yunnan Provincial Seismological Bureau, Kunming 650224, China; 2. Yunnan University for Nationalities, Kunming 650031, China
关键词:
加速度记录 时频特性 希尔伯特-黄变换(HHT) 漾濞地震 强震动数据
Keywords:
acceleration record time-frequency characteristic Hilbert-Huang Transform(HHT) Yangbi earthquake strong ground motion data
分类号:
P315.9
DOI:
10.19994/j.cnki.WEE.2023.0037
文献标志码:
A
摘要:
2021年5月21日漾濞Ms6.4地震是云南近10 a以来继Ms6.5鲁甸地震和Ms6.6景谷地震后发生的又一次破坏性浅源地震,其震中位于滇西北地区维西-乔后断裂带附近。震源机制结果显示:此次地震属于走滑型破裂,符合区域构造特征。为进一步研究该地震强震动特征,特引入改进后的希尔伯特-黄变换(HHT),以不同角度客观分析强震动的尺度和频域特征。研究结果表明:希尔伯特-黄变换在对实际地震动记录进行特征提取后,得到的边际谱和时频谱可在一定程度上保留原始数据的主要信息,该方法可为类似破坏性浅源地震的强震动特征分析提供更有效的信息参数,保证了信号分解的稳定性,更适于处理非平稳信号,可为现代信号应用分析于强震动特征提供另一种新思路。
Abstract:
The Yangbi Ms6.4 earthquake on May 21, 2021 is another destructive shallow earthquake that occurred in Yunnan after the Ms6.5 Ludian earthquake and the Ms6.6 Jinggu earthquake in the past 10 years. Its epicenter was located near the Weixi-Qiaohou fault zone in northwestern Yunnan. The results of the focal mechanism show that the earthquake belongs to a strike-slip type rupture, which is in line with the regional tectonic characteristics. In order to further study the characteristics of the strong ground motion, an improved Hilbert-Huang transform(HHT)was introduced to objectively analyze the scale and frequency domain characteristics of the strong ground motion from different perspectives. The research results show that the marginal spectrum and the time-spectrum obtained by the Hilbert-Huang transform can retain the main information of the original data to a certain extent after the feature extraction of the actual ground motion records, and this method can be used for similar destructive shallow sources. The analysis of strong ground motion characteristics provides more effective information parameters, ensures the stability of signal decomposition. The analysis of strong ground motion characteristics is more suitable for processing non-stationary signals, and provides another new idea for modern signal application analysis to strong ground motion characteristics.

参考文献/References:

[1] 高云超. 希尔伯特—黄变换在水声信号处理中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
GAO Yunchao. A research on application of Hilbert-Huang transform in the underwater acoustic signal processing[D]. Harbin: Harbin Engineering University, 2009.(in Chinese)
[2] 董建华, 顾汉明, 张星. 几种时频分析方法的比较及应用[J]. 工程地球物理学报, 2007, 4(4): 312-316.
DONG Jianhua, GU Hanming, ZHANG Xing. A comparison of time-frequency analysis methods and their applications[J]. Chinese Journal of Engineering Geophysics, 2007, 4(4): 312-316.(in Chinese)
[3] BASIR M S S M, ABDULLAHI M I, ABDULLAH A R.Window optimisation of power quality signal detection using Gabor transform[J]. ASM Science Journal, 2021, 14: 1-10.
[4] ZHANG P, DAI Y S, TAN Y C, et al. A time-varying wavelet phase extraction method using the wavelet amplitude spectra[J]. Systems Science & Control Engineering, 2018, 6(3): 10-18.
[5] ZHANG X W, SHANG Y Z, GUO D X, et al. A more effective method of extracting the characteristic value of pulse wave signal based on wavelet transform[J]. Journal of Biomedical Science and Engineering, 2016, 9(10B): 9-19.
[6] KIZHNER S, FLATLEY T P, HUANG N E, et al. On the Hilbert-Huang transform data processing system development[C]∥2004 IEEE Aerospace Conference Proceedings(IEEE Cat. No.04TH8720). March 6-13, 2004, Big Sky, MT, USA. IEEE, 2004: 1961-1979.
[7] YANG J N, LEI Y, PAN S W, et al. System identification of linear structures based on Hilbert-Huang spectral analysis. Part 1: normal modes[J]. Earthquake Engineering & Structural Dynamics, 2003, 32(9): 1443-1467.
[8] HUANG N E. A new spectral representation of earthquake data: Hilbert spectral analysis of station TCU129, Chi-Chi, Taiwan, 21 September 1999[J]. Bulletin of the Seismological Society of America, 2004, 91(5): 1310-1338.
[9] ZHANG R R, ASCE M, MA S, et al. Hilbert-Huang transform analysis of dynamic and earthquake motion recordings[J]. Journal of Engineering Mechanics, 2003, 129(8): 861-875.
[10] 刘强, 周瑞忠, 刘宇航. 基于HHT变换的结构地震响应与能量计算分析[J]. 武汉大学学报(工学版), 2009, 42(6): 780-784.
LIU Qiang, ZHOU Ruizhong, LIU Yuhang. Computation and analysis of seismic response and energy based on Hilbert-Huang transform[J]. Engineering Journal of Wuhan University, 2009, 42(6): 780-784.(in Chinese)
[11] WANG T, ZHANG M C, YU Q H, et al. Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal[J]. Journal of Applied Geophysics, 2012, 83: 29-34.
[12] 梁岳, 顾汉明, 姚知铭. 改进的希尔伯特-黄变换在储层预测中的应用[J]. 石油物探, 2016, 55(4): 606-615.
LIANG Yue, GU Hanming, YAO Zhiming. The application of improved Hilbert-Huang transform in reservoir prediction[J]. Geophysical Prospecting for Petroleum, 2016, 55(4): 606-615.(in Chinese)
[13] 梁宏, 朱永莉, 李大虎, 等. 基于希尔伯特-黄变换的九寨沟M7.0地震加速度记录时频分析[J]. 国际地震动态, 2019, 49(7): 9-16.
LIANG Hong, ZHU Yongli, LI Dahu, et al. Time-frequency analysis of Jiuzhaigou M7.0 seismic acceleration record based on Hilbert-Huang transform[J]. International Seismic Dynamics, 2019, 49(7): 9-16.(in Chinese)
[14] T云南大理州漾濞县6.4级地震[EB/OL]. https:∥news. ceic. ac. cn/CC20210521214835. Html, 2021.(in Chinese).
T M6.4 earthquake in Yangbi County, Dali Prefecture, Yunnan Province [EB/OL]. https:∥news. ceic. ac. cn/CC20210521214835. Html, 2021.(in Chinese).
[15] 臧阳. 维西—乔后断裂玉狮场—弥沙段晚第四纪活动性研究[D]. 昆明:云南大学,2014.
ZANG Yang. Study on the late quaternary activity of the Yushichang-Misha Section of the Weixi-Qiaohou Fault[D]. Kunming: Yunnan University, 2014.
[16] 常祖峰, 常昊, 李鉴林, 等. 维西—乔后断裂南段正断层活动特征[J]. 地震研究, 2016, 39(4): 579-586, 717.
CHANG Zufeng, CHANG Hao, LI Jianlin, et al. The characteristic of active normal faulting of the southern segment of Weixi-Qiaohou fault[J]. Journal of Seismological Research, 2016, 39(4): 579-586, 717.(in Chinese)
[17] 常祖峰, 常昊, 臧阳, 等. 维西—乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 2016, 22(3): 517-530.
CHANG Zufeng, CHANG Hao, ZANG Yang, et al. Recent active features of Weixi-Qiaohou fault and its relationship with the Honghe fault[J]. Journal of Geomechanics, 2016, 22(3): 517-530.(in Chinese)
[18] 中国地震台网中心. 2021年第5期震情专报[R]. 北京: 中国地震台网中心, 2021: 1-5.
China Earthquake Network Center. 2021 Issue 5 Earthquake Special Report[R]. Beijing: China Earthquake Network Center, 2021: 1-5.
[19] 于海英, 江汶乡, 解全才, 等. 近场数字强震仪记录误差分析与零线校正方法[J]. 地震工程与工程振动, 2009, 29(6): 1-12.
YU Haiying, JIANG Wenxiang, XIE Quancai, et al. Baseline correction of digital strong-motion records in near-field[J]. Earthquake Engineering and Engineering Dynamics, 2009, 29(6): 1-12.(in Chinese)
[20] 解全才, 马强, 王丽艳, 等. 2017年九寨沟7.0级地震强震动记录处理与分析[J]. 地震工程与工程振动, 2018, 38(5): 111-119.
XIE Quancai, MA Qiang, WANG Liyan, et al. Data processing and analysis of strong ground motion records of the 2017 Ms7.0 Jiuzhaigou earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2018, 38(5): 111-119.(in Chinese)
[21] GB/T17742—2020, 中国地震烈度表[S]. 北京:中国标准出版社, 2020.
GB/T17742—2020, The Chinese Seismic Intensity Scale[S]. Beijing: Standards Press of China, 2020.(in Chinese)
[22] 高云超. 希尔伯特—黄变换在水声信号处理中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2009.
GAO Yunchao. A research on application of Hilbert-Huang transform in the underwater acoustic signal processing[D]. Harbin: Harbin Engineering University, 2009.(in Chinese)
[23] FLANDRIN P, RILLING G, GONCALVES P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Processing Letters, 2004, 11(2): 112-114.

备注/Memo

备注/Memo:
收稿日期:2022-06-13; 修回日期:2022-10-24
基金项目:云南省地震局青年基金(2022K11)
作者简介:郭亚茹(1992-),女,助理工程师,硕士,主要从事地震监测研究. E-mail:2270780774@qq.com

更新日期/Last Update: 1900-01-01