参考文献/References:
[1] FANG L H, WU J P, WANG W L, et al. Aftershock observation and analysis of the 2013Ms 7.0 Lushan earthquake[J]. Seismological Research Letters, 2015, 86(4): 1135-1142.
[2] ALLEN R V. Automatic earthquake recognition and timing from single traces[J]. Bulletin of the Seismological Society of America, 1978, 68(5): 1521-1532.
[3] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60: 84-90.
[4] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science,2014,9(4):1542-1556.
[5] 赵明, 陈石, Dave Yuen. 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 地球物理学报, 2019, 62(1): 374-382.
ZHAO Ming, CHEN Shi, YUEN D. Waveform classification and seismic recognition by convolution neural network[J]. Chinese Journal of Geophysics, 2019, 62(1): 374-382.(in Chinese)
[6] ZHANG G Y, LIN C Y, CHEN Y K. Convolutional neural networks for microseismic waveform classification and arrival picking[J]. Geophysics, 2020, 85(4): 227-240.
[7] MEN-ANDRIN M, ROSS Z E, ANSHUL R, et al. Reliable real‐time seismic signal/noise discrimination with machine learning[J]. Journal of Geophysical Research Solid Earth(JGR), 2019, 124(1): 788-800.
[8] LI Z F, MEIER M A, HAUKSSON E, et al. Machine learning seismic wave discrimination: application to earthquake early warning[J]. Geophysical Research Letters, 2018, 45(10): 4773-4779.
[9] CHEN Y K, ZHANG G Y, BAI M, et al. Automatic waveform classification and arrival picking based on convolutional neural network[J]. Earth and Space Science, 2019, 6(7): 1244-1261.
[10] ZHANG J Y, JIANG R C, LI B. An automatic recognition method of microseismic signals based on EEMD-SVD and ELM[J]. Computers & Geosciences, 2019, 133: 104318.
[11] 宋晋东, 余聪, 李山有. 地震预警现地PGV连续预测的最小二乘支持向量机模型[J]. 地球物理学报, 2021, 64(2): 555-568.
SONG Jindong, YU Cong, LI Shanyou. Continuous prediction of onsite PGV for earthquake early warning based on least squares support vector machine[J]. Chinese Journal of Geophysics, 2021, 64(2): 555-568.(in Chinese)
[12] SONG J D, ZHU J B, WANG Y, et al. On-site alert-level earthquake early warning using machine-learning-based prediction equations[J]. Geophysical Journal International, 2022, 231(2): 786-800.
[13] LINVILLE L, PANKOW K, DRAELOS T. Deep learning models augment analyst decisions for event discrimination[J]. Geophysical Research Letters, 2019, 46(7): 3643-3651.
[14] ZHANG H, MA C C, PAZZI V, et al. Deep convolutional neural network for microseismic signal detection and classification[J]. Pure and Applied Geophysics, 2020, 177(12): 5781-5797.
[15] LI J, HEI D W, CUI G F, et al. GAN-LSTM joint network applied to seismic array noise signal recognition[J]. Applied Sciences, 2021, 11(21): 9987.
[16] BRAS R L, ARORA N, KUSHIDA N, et al. NET-VISA from cradle to adulthood. A machine-learning tool for seismo-acoustic automatic association[J]. Pure and Applied Geophysics, 2021, 178(7): 2437-2458.
[17] LI J, WANG J, WANG X M, et al. Evaluation and comparison of the results of the NET-VISA seismic event association method based on Bayesian theory[J]. Natural Hazards, 2021, 105(2): 1521-1539.
[18] 林彬华, 金星, 陈惠芳, 等. 基于反向传播神经网络的闽台ML震级偏差分析与修正[J]. 地震学报, 2019, 41(6): 723-734.
LIN Binhua, JIN Xing, CHEN Huifang, et al. Analysis and revision of magnitude ML deviation between Fujian and Taiwan based on BP neural network[J]. Acta Seismologica Sinica, 2019, 41(6): 723-734.(in Chinese)
[19] 林彬华, 金星, 康兰池, 等. 基于卷积神经网络的地震震级测定研究[J]. 地球物理学报, 2021, 64(10): 3600-3611.
LIN Binhua, JIN Xing, KANG Lanchi, et al. The research of earthquake magnitude determination based on Convolutional Neural Networks[J]. Chinese Journal of Geophysics, 2021, 64(10): 3600-3611.(in Chinese)
[20] DOKHT R M H, KAO H, VISSER R, et al. Seismic event and phase detection using time-frequency representation and convolutional neural networks[J]. Seismological Research Letters, 2019, 90(2A): 481-490.
[21] LI Z, MEIER M A, HAUKSSON E, et al. Machine Learning Seismic Wave Discrimination: Application to Earthquake Early Warning. Geophys. Res. Lett. 2018, 45, 4773-4779.
[22] Yann Le Cun, Yoshua Bengio, Convolutional networks for images, speech, and time series, in: The Handbook of Brain Theory and Neural Networks, MIT Press, 1998: 255-258.
[23] NAGI J, DUCATELLE F, DI CARO G A, et al. Max-pooling convolutional neural networks for vision-based hand gesture recognition[C]∥2011 IEEE International Conference on Signal and Image Processing Applications(ICSIPA). Kuala Lumpur, Malaysia. IEEE, 2012: 342-347.
[24] PEROL T, GHARBI M, DENOLLE M. Convolutional neural net work for earthquake detection and location, Sci. Adv. 4, e1700578, 2018.
[25] ROSS Z, E MEIER, M-A, HAUKSSON E. P wave arrival picking and first motion polarity determination with deep learning. Journal of Geophysical Research: Solid Earth, 2018: 123, 5120-5129.
[26] ZHU W Q, BEROZA G C. PhaseNet: A deep-neural-network-based seismic arrival-time picking method[J]. Geophysical Journal International, 2019, 216(1): 261-273.
[27] LOMAX A, MICHELINI A, JOZINOVIC D. An investigation of rapid earthquake chara-cterization using single‐station waveforms and a convolutional neural network. Seismological Research Letters, 2019, 90(2A), 517-529.
[28] Lengerich, Benjamin J. Visual Explanations for Convolutional Neural Networks via Input Resampling[EB/OL]. 2017: ArXiv Pre-print ArXiv:1707.09641.
相似文献/References:
[1]孙利,钟红,林皋.高速铁路地震预警系统现状综述[J].世界地震工程,2011,(03):089.
SUN Li,ZHONG Hong,LIN Gao.An overview of earthquake early warning systems for high speed railways and its application to Beijing-Shanghai high speed railway[J].,2011,(02):089.
[2]李纪恩,李一行,陈平.日本地震预警信息发布法律制度与实践[J].世界地震工程,2013,(03):041.
LI Jien,LI Yihang,CHEN Ping.Legal system and practice of Japan earthquake early warning information release[J].,2013,(02):041.
[3]佘天莉,高峰,马树林.地震预警仪器研究[J].世界地震工程,2014,(04):129.
SHE Tianli,GAO Feng,MA Shulin.Study on instruments of earthquake early warning[J].,2014,(02):129.
[4]李纪恩,贾鹏民.地震预警信息发布与传播立法若干问题探析[J].世界地震工程,2017,33(02):001.
LI Jien,JIA Pengmin.Analysis of the legislative issues about earthquake early warning information release and dissemination[J].,2017,33(02):001.
[5]李鸿杰,曾鹏毅,黄道兴,等.一种基于位移源谱的地震预警快速震级估算方法及影响因素研究[J].世界地震工程,2017,33(04):187.
LI Hongjie,ZENG Pengyi,HUANG Daoxing,et al.Evaluation for influence factors of a rapidly estimating earthquake magnitude algorithm for EEW: displacement source spectrum method[J].,2017,33(02):187.
[6]李鸿杰,张建经,陈逸民,等.基于2014年云南地区地震的地震预警参数与快速震级估算研究[J].世界地震工程,2018,34(02):123.
LI Hongjie,ZHANG Jianjing,CHEN Yimin,et al.Research on earthquake early warning parameters and rapid magnitude estimation based events in Yunnan region in 2014[J].,2018,34(02):123.
[7]卢建旗,李山有.地震预警断层参数实时识别方法(FinDer)详解及其性能初步评价[J].世界地震工程,2021,(01):152.
LU Jianqi,LI Shanyou.Detailed analysis and preliminary performance evaluation of the FinDer:A real-time finite fault rupture detector for earthquake early warning[J].,2021,(02):152.
[8]朱景宝,宋晋东,李山有.基于支持向量机的2021年2月13日日本福岛近海Mj7.3级地震震级估算[J].世界地震工程,2021,(02):074.
ZHU Jingbao,SONG Jindong,LI Shanyou.Magnitude estimation for the February 13, 2021 Mj7.3 earthquake near the coast of Fukushima Japan based on support vector machine[J].,2021,(02):074.
[9]汪源,宋晋东,李山有.2021年2月13日日本福岛Mj7.3级地震潜在破坏区快速估计[J].世界地震工程,2021,(02):090.
WANG Yuan,SONG Jindong,LI Shanyou.Rapid estimation of potential damage zone for the Mj7.3 Fukushima earthquake in Japan on February 13, 2021[J].,2021,(02):090.
[10]杨黎薇,邱志刚.自动捡拾P波到时综合方法的选取与探讨[J].世界地震工程,2021,(02):098.
YANG Liwei,QIU Zhigang.Discussion on the synthetic method of automatically picking up of P wave[J].,2021,(02):098.