[1](赵登科,王自法,李兆焱,等.泸定Ms6.8地震房屋损失快速评估[J].世界地震工程,2023,39(02):178-188.[doi:10.19994/j.cnki.WEE.2023.0041 ]
 (ZHAO Dengke,WANG Zifa,LI Zhaoyan,et al.Rapid assessment of building losses in Luding Ms6.8 earthquake[J].,2023,39(02):178-188.[doi:10.19994/j.cnki.WEE.2023.0041 ]
点击复制

泸定Ms6.8地震房屋损失快速评估
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年02期
页码:
178-188
栏目:
常规论文
出版日期:
2023-05-15

文章信息/Info

Title:
Rapid assessment of building losses in Luding Ms6.8 earthquake
文章编号:
1007-6069(2023)02-0178-11
作者:
(赵登科12王自法123李兆焱12周阳3高曹珀4WANG Jianming3位栋梁3张昕3)
1. 中国地震局工程力学研究所 中国地震局地震工程与工程振动重点实验室,黑龙江 哈尔滨 150080; 2. 地震灾害防治应急管理部重点)/(实验室,黑龙江 哈尔滨 150080; 3. 中震科建(广东)防灾减灾研究院, 广东 韶关 512000; 4. 河南大学 土木建筑学院, 河南 开封 475004
Author(s):
(ZHAO Dengke12 WANG Zifa123 LI Zhaoyan12 ZHOU Yang3 GAO Caopo4 WANG Jianming3 )/((WEI Dongliang3 ZHANG Xin3)
1. Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China; 2. Key Laboratory of Earthquake Disaster Mitigation, Ministry of Emergency Management, Harbin 150080, China; 3. CEAKJ ADPRHexa Inc, Shaoguan, Guangdong 512000, China; 4. School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China
关键词:
泸定地震 损失快速估计 Copula理论 相关随机变量模拟
Keywords:
Luding earthquake rapid loss estimation Copula theory Correlated random variables simulation
分类号:
P315.9
DOI:
10.19994/j.cnki.WEE.2023.0041
文献标志码:
A
摘要:
震后房屋损失的快速评估对于灾后应急救援等至关重要。现有的地震风险评估方法要么仅提供损失的均值,要么以某一方差常数来描述损失的分布特征,均无法准确有效地反映各空间位置点损失的随机性及相关关系,最终影响整体损失评估结果的准确度。本文基于Copula理论,提出了一种适用于地震巨灾风险分析的相关随机变量模拟方法,好处是在实现快速计算的同时,能够考虑地震损失中的不确定性与相关性。利用所提方法对2022年9月5日四川泸定6.8级地震的房屋损失进行评估,得到了各结构类型与县区的损失分布,并与PAGER方法所得到的损失分布进行对比。结果表明:此次地震房屋总体损失超过89.8%的概率处于10~100亿元人民币量级水平,其中超过50.8%的概率为20~50亿元人民币; 损失较大的三个县区分别是泸定县、石棉县和荥经县,砌体结构的经济损失约是框架结构的2倍; 相比于PAGER,该方法给出的损失概率分布形状更加灵活,能够详细地反映不同县区的房屋损失特征。研究方法和结果为震后损失快速评估技术提供参考,也为未来地震的灾后应急救援等提供科学依据。
Abstract:
Rapid assessment of earthquake building losses is essential for urgent post-earthquake responses. Existing earthquake loss assessment methods either provide only the mean value of losses or characterize the distribution of losses with a certain variance constant, and neither of which could accurately and effectively reflect the uncertainty and correlation of losses at each spatial location point, which ultimately affect the accuracy of the overall loss assessment and its uncertainty estimate. Based on Copula theory, this paper proposes a correlated random variable simulation method applicable to earthquake catastrophe risk analysis, with the benefit of achieving fast computation while taking into account the uncertainty and correlation in the earthquake losses of buildings. The proposed method was used to assess the losses of the 6.8 magnitude earthquake in Luding, Sichuan, China, on September 5, 2022, and the loss distribution for structure types and for counties was obtained and compared with the loss distribution based on the PAGER method. The results show that the probability of the overall loss of houses in this earthquake is more than 89.8% at the level of RMB 1-10 billion, and the probability of more than 50.8% is RMB 2-5 billion. The three counties with the largest losses are Luding, Shimian and Xingjing counties, and the economic loss of masonry structures is about twice as much as that of frame structures. In contrast to PAGER, the shape of the loss probability distribution given by this method is more flexible and could objectively reflect in detail the characteristics of building losses in different counties. The research method and results provide a reference for rapid damage assessment after the earthquake, and also provide a scientific basis for post-disaster urgent responses.

参考文献/References:

[1] WANG Z F. A preliminary report on the Great Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(2): 225-234.
[2] 闫佳琦, 陈相兆, 孙柏涛. 地震人员伤亡评估方法及损失评估系统综述[J]. 工程力学, 2021, 38(12): 1-16.
YAN Jiaqi, CHEN Xiangzhao, SUN Baitao. Review of estimation methods and systems used to predict earthquake casualties[J]. Engineering Mechanics, 2021, 38(12): 1-16.(in Chinese)
[3] 徐国栋, 袁艺, 方伟华, 等. 玉树7.1级地震震后损失快速评估[J]. 地震工程与工程振动, 2011, 31(1): 114-123.
XU Guodong, YUAN Yi, FANG Weihua, et al. Fast loss assessment of M7.1 Yushu earthquake[J]. Journal of Earthquake Engineering and Engineering Dynamics, 2011, 31(1): 114-123.(in Chinese)
[4] 陈棋福, 陈凌. 利用国内生产总值和人口数据进行地震灾害损失预测评估[J]. 地震学报, 1997, 19(6): 640-649.
CHEN Qifu, CHEN Ling. Prediction of earthquake damage loss using gross domestic product and population data [J]. Acta Seismologica Sinica, 1997, 19(6): 640-649.(in Chinese)
[5] 徐国栋, 方伟华, 史培军, 等. 汶川地震损失快速评估[J]. 地震工程与工程振动, 2008, 28(6): 74-83.
XU Guodong, FANG Weihua, SHI Peijun, et al. The fast loss assessment of the Wenchuan Earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2008, 28(6): 74-83.(in Chinese)
[6] 吴立新, 李志锋, 王植, 等. 地震灾情快速评估方法和应用: 以玉树地震为例[J]. 科技导报, 2010, 28(24): 38-43.
WU Lixin, LI Zhifeng, WANG Zhi, et al. Rapid assessment of earthquake disaster: with Yushu earthquake as an example[J]. Science & Technology Review, 2010, 28(24): 38-43.(in Chinese)
[7] 吴继伟, 梁兴文, 朱汉波. FEMAP58新一代建筑抗震性能评估方法[J]. 地震工程与工程振动, 2015, 35(3): 37-43.
WU Jiwei, LIANG Xingwen, ZHU Hanbo. FEMA P-58-next-generation performance assessment of buildings[J]. Earthquake Engineering and Engineering Dynamics, 2015, 35(3): 37-43.(in Chinese)
[8] ZENG X, LU X Z, YANG T Y, et al. Application of the FEMA-P58 methodology for regional earthquake loss prediction[J]. Natural Hazards, 2016, 83(1): 177-192.
[9] 温奇, 陈世荣, 和海霞, 等. 无人机遥感系统在云南盈江地震中的应用[J]. 自然灾害学报, 2012, 21(6): 65-71.
WEN Qi, CHEN Shirong, HE Haixia, et al. Application of remote sensing system of unmanned aerial vehicle in Yingjiang, Yunnan earthquake[J]. Journal of Natural Disasters, 2012, 21(6): 65-71.(in Chinese)
[10] 李金香, 常想德, 赵朔, 等. 新疆塔什库尔干塔吉克自治县地震极灾区地震烈度遥感快速评估研究[J]. 中国地震, 2018, 34(3): 513-524.
LI Jinxiang, CHANG Xiangde, ZHAO Shuo, et al. Rapid assessment of seismic intensity from remote sensing images in the extreme earthquake disaster area of taxkorgan Tajik autonomous County, Xinjiang[J]. Earthquake Research in China, 2018, 34(3): 513-524.(in Chinese)
[11] 李昌珑, 李宗超, 吕红山, 等. 基于三维图像模式识别的西藏东南部地震灾害损失风险评估[J]. 地球物理学报, 2019, 62(1): 393-410.
LI Changlong, LI Zongchao, L? Hongshan, et al. Seismic disaster loss risk assessment for southeastern Tibet based on 3D image pattern recognition[J]. Chinese Journal of Geophysics, 2019, 62(1): 393-410.(in Chinese)
[12] 陈尧, 林均岐, 刘金龙, 等. 地震直接经济损失快速评估方法研究[J]. 世界地震工程, 2017, 33(1): 188-193.
CHEN Yao, LIN Junqi, LIU Jinlong, et al. Study on rapid assessment method of earthquake direct economic loss[J]. World Earthquake Engineering, 2017, 33(1): 188-193.(in Chinese)
[13] JAISWAL K, WALD D, PORTER K. A global building inventory for earthquake loss estimation and risk management[J]. Earthquake Spectra, 2010, 26(3): 731-748.
[14] 李成帅, 杨建思, 田宝峰, 等. 四川芦山7.0级地震直接经济损失快速评估[J]. 自然灾害学报, 2013, 22(3): 9-17.
LI Chengshuai, YANG Jiansi, TIAN Baofeng, et al. Rapid assessment of direct economic loss caused by MS 7.0 Lushan, Sichuan earthquake[J]. Journal of Natural Disasters, 2013, 22(3): 9-17.(in Chinese)
[15] 郭安薪, 侯爽, 李惠, 等. 城市典型建筑地震损失预测方法Ⅱ: 地震损失估计[J]. 地震工程与工程振动, 2007, 27(6): 70-74.
GUO Anxin, HOU Shuang, LI Hui, et al. Earthquake loss prediction method of typical urban buildings Ⅱ: earthquake loss assessment[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(6): 70-74.(in Chinese)
[16] 赵登科, 王自法, 刘渊, 等. 基于新西兰实际震害资料的地震损失不确定性分析[J]. 地震工程与工程振动, 2021, 41(2): 84-95.
ZHAO Dengke, WANG Zifa, LIU Yuan, et al. Earthquake loss uncertainty based on detailed loss data in New Zealand[J]. Earthquake Engineering and Engineering Dynamics, 2021, 41(2): 84-95.(in Chinese)
[17] ZAPATA J C G, PITTORE M, COTTON F, et al. Epistemic uncertainty of probabilistic building exposure compositions in scenario-based earthquake loss models[J]. Bulletin of Earthquake Engineering, 2022, 20(5): 2401-2438.
[18] 孙振凯. PAGER—地震影响的快速评估(USGS情况说明书第2010-3036号)[J]. 国际地震动态, 2013, 43(1): 4-7, 33.
SUN Zhenkai. PAGER—rapid assessment of an earthquake's impact(USGS factsheet 2010-3036)[J]. Recent Developments in World Seismology, 2013, 43(1): 4-7, 33.(in Chinese)
[19] JAISWAL K, WALD D J, EARLE P S, et al. Earthquake Casualty Models Within the USGS Prompt Assessment of Global Earthquakes for Response(PAGER)System[M]. Human Casualties in Earthquakes,Springer. 2011: 83-94.(in Chinese)
[20] ROHMER J, DOUGLAS J, BERTIL D, et al. Weighing the importance of model uncertainty against parameter uncertainty in earthquake loss assessments[J]. Soil Dynamics and Earthquake Engineering, 2014, 58: 1-9.
[21] 周阳, 王自法, 石磊, 等. 地震损失的空间相关性及其对震害损失估计的影响[J]. 世界地震工程, 2022, 38(2): 151-159.
ZHOU Yang, WANG Zifa, SHI Lei, et al. Spatial correlation of earthquake damage and its influence on earthquake loss distribution estimation[J]. World Earthquake Engineering, 2022, 38(2): 151-159.(in Chinese)
[22] WEATHERILL G A, SILVA V, CROWLEY H, et al. Exploring the impact of spatial correlations and uncertainties for portfolio analysis in probabilistic seismic loss estimation[J]. Bulletin of Earthquake Engineering, 2015, 13(4): 957-981.
[23] ZHANG Y X, ZHENG S S, SUN L F, et al. Developing GIS-based earthquake loss model: a case study of Baqiao District, China[J]. Bulletin of Earthquake Engineering, 2021, 19(5): 2045-2079.
[24] 高帅坡, 陈立春, 梁明剑, 等. 鲜水河断裂带康定城南新榆林探槽组揭露的破裂特征与地震复发行为[J]. 工程科学与技术, 2021, 53(3): 53-61.
GAO Shuaipo, CHEN Lichun, LIANG Mingjian, et al. Rupture characteristics and seismic recurrence behaviors of Xianshuihe fault revealed by Xinyulin trenches, south of Kangding[J]. Advanced Engineering Sciences, 2021, 53(3): 53-61.(in Chinese)
[25] 李海兵, 潘家伟, 孙知明, 等. 大陆构造变形与地震活动—以青藏高原为例[J]. 地质学报, 2021, 95(1): 194-213.
LI Haibing, PAN Jiawei, SUN Zhiming, et al. Continental tectonic deformation and seismic activity: a case study from the Tibetan Plateau[J]. Acta Geologica Sinica, 2021, 95(1): 194-213.(in Chinese)
[26] 王欣, 方成勇, 唐小川, 等. 泸定Ms 6.8地震诱发滑坡应急评价研究[J]. 武汉大学学报(信息科学版), 2023, 48(1): 25-35.
WANG Xin, FANG Chengyong, TANG Xiaochuan, et al. Research on emergency evaluation of landslides induced by the Luding ms 6.8 earthquake[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 25-35.(in Chinese)
[27] 周中红, 陈文凯, 何少林, 等. 基于人口公里格网的地震压埋人员分布评估方法的应用与评价—以甘肃岷县漳县6.6级地震为例[J]. 地震研究, 2019, 42(2): 288-294, 306.
ZHOU Zhonghong, CHEN Wenkai, HE Shaolin, et al. Application and evaluation on a evaluating method for distribution of earthquake buried personnel based on population kilometer grid: taking Minxian-Zhangxian M6.6 earthquake as an example[J]. Journal of Seismological Research, 2019, 42(2): 288-294, 306.(in Chinese)
[28] 俞言祥. 新一代地震区划图地震动参数衰减关系的建立与特点分析[J]. 城市与减灾, 2016(3): 34-38.
YU Yanxiang. Establishment and characteristic analysis of attenuation relationship of ground motion parameters in new generation seismic zoning map[J]. City and Disaster Reduction, 2016(3): 34-38.(in Chinese)
[29] GB/T 17742—2020 中国地震烈度表: [S]. 北京: 中国标准出版社, 2020.
GB/T 17742—2020 The Chinese Seismic Intensity Scale[S]. Beijing: Standards Press of China, 2020.(in Chinese)
[30] 中华人民共和国应急管理部. 应急管理部发布四川泸定6.8级地震烈度图[EB/OL]. 2022.09.[2022.10]. https:∥www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml. Ministry of Emergency Management, PRC. The Ministry of Emergency Management released an intensity map of the magnitude 6.8 earthquake in Luding, Sichuan province[EB/OL]. 2022.09.[2022.10]..https:∥www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml.
[31] 熊政辉. 面向地震保险的巨灾模型研究与应用[D]. 北京: 中国地震局地球物理研究所, 2019.
XIONG Zhenghui. The Study and Application of Catastrophe Model for Earthquake Insurance[D]. Beijing:Institute of Geophysics, China Earthquake Administration Doctoral Dissertation, 2019.(in Chinese)
[32] 张秋石. 砌体结构地震易损性及其在保险中的应用研究[D]. 西安: 西安建筑科技大学, 2017.
ZHANG Qiushi. Research on the Earthquake Vulnerability of Masonry Structure and Its Application to Insurance[D]. Xi'an: Xi'an University of Architecture and Technology, 2017.(in Chinese)
[33] 牛亚运. 基于随机IDA法的不同抗震设防烈度下RC框架结构的易损性分析[D]. 哈尔滨: 中国地震局工程力学研究所, 2017.
NIU Yayun. Study on Seismic Fragility Analysis of RC Frame Structures with Different Seismic Fortification Levels Based on Random IDA Method[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2017.(in Chinese)
[34] 王自法, Sangjoon Park, Selina Lee, 等. 提高地震灾害损失估计精度的几点研究[J]. 地震工程与工程振动, 2014, 34(4): 110-114.
WANG Zifa, PARK S, LEE S, et al. Quantification improvement of earthquake loss estimation[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34(4): 110-114.(in Chinese)
[35] 仝文博, 王自法, 赵登科, 等. 基于日本311大地震详细破坏数据的结构易损性分析[J]. 地震工程与工程振动, 2022, 42(3): 171-179.
TONG Wenbo, WANG Zifa, ZHAO Dengke, et al. Comparison of vulnerability based on detailed loss data from the March 11, 2011 Japan earthquake[J]. Earthquake Engineering and Engineering Dynamics, 2022, 42(3): 171-179.(in Chinese)
[36] WESSON R L, PERKINS D M, LEYENDECKER E V, et al. Losses to single-family housing from ground motions in the 1994 northridge, California, earthquake[J]. Earthquake Spectra, 2004, 20(3): 1021-1045.
[37] 赵登科. 基于详细震害资料的地震损失研究与应用[D]. 开封: 河南大学, 2022.
ZHAO Dengke. Research and Its Application of Earthquake Loss Based on Detailed Earthquake Damage Data[D]. Kaifeng: Henan University, 2022.(in Chinese)
[38] 胡少卿, 孙柏涛, 王东明, 等. 经验震害矩阵的完善方法研究[J]. 地震工程与工程振动, 2007, 27(6): 46-50.
HU Shaoqing, SUN Baitao, WANG Dongming, et al. Approach to making empirical earthquake damage matrix[J]. Earthquake Engineering and Engineering Dynamics, 2007, 27(6): 46-50.(in Chinese)
[39] XUE-KUN SONG P. Multivariate dispersion models generated from Gaussian copula[J]. Scandinavian Journal of Statistics, 2000, 27(2): 305-320.
[40] 王俊, 蔡兴国, 季峰. 基于Copula理论的相关随机变量模拟方法[J]. 中国电机工程学报, 2013, 33(22): 75-82, 13.
WANG Jun, CAI Xingguo, JI Feng. A simulation method of correlated random variables based on copula[J]. Proceedings of the CSEE, 2013, 33(22): 75-82, 13.(in Chinese)
[41] 魏艳华, 王丙参. 多维相关随机变量的抽样方法[J]. 统计与决策, 2020, 36(17): 5-8.
WEI Yanhua, WANG Bingcan. Sampling method for multidimensional correlated random variables[J]. Statistics & Decision, 2020, 36(17): 5-8.(in Chinese)
[42] WANG Z. Spatial correlation of earthquake loss and its impact on loss aggregation[A].17th World Conference on Earthquake Engineering, 17WCEE Sendai, Japan-September 13th to 18th 2020,Paper N° C000089,Registration Code: A-02012.

备注/Memo

备注/Memo:
收稿日期:2022-10-24; 修回日期:2022-12-18
基金项目:中国地震局工程力学研究所基本科研业务费专项资助项目(编号:2021B09); 国家自然科学基金面上项目(51978634)
作者简介:赵登科(1997—),男,博士研究生,主要从事巨灾应急响应相关的研究. E-mail:denco666@163.com

更新日期/Last Update: 1900-01-01