[1](岳庆霞,于一浦,杨 彬,等.山东临沂地区砂土剪切波速与标准贯入击数关系统计分析[J].世界地震工程,2023,39(02):220-229.[doi:10.19994/j.cnki.WEE.2023.0045 ]
 (YUE Qingxia,YU Yipu,YANG Bin,et al.Statistical analysis of relationship between sand soil shear wave velocity and standard penetration test blow count in Linyi region of Shandong province[J].,2023,39(02):220-229.[doi:10.19994/j.cnki.WEE.2023.0045 ]
点击复制

山东临沂地区砂土剪切波速与标准贯入击数关系统计分析
分享到:

《世界地震工程》[ISSN:/CN:]

卷:
39
期数:
2023年02期
页码:
220-229
栏目:
常规论文
出版日期:
2023-05-15

文章信息/Info

Title:
Statistical analysis of relationship between sand soil shear wave velocity and standard penetration test blow count in Linyi region of Shandong province
文章编号:
1007-6069(2023)02-0220-10
作者:
(岳庆霞1于一浦1杨 彬2王华林2)
1. 山东建筑大学 土木工程学院,济南 250101; 2. 山东省地震局,济南 250014
Author(s):
(YUE Qingxia1 YU Yipu1 YANG Bin2 WANG Hualin2)
1. School of Civil Engineering, Shandong Jianzhu University, Jinan 250101, China; 2. Shandong Earthquake Agency, Jinan 250014, China
关键词:
剪切波速 标贯击数 密实度 回归分析
Keywords:
shear wave velocity standard penetration test blow count compactness regression analysis
分类号:
P315.2
DOI:
10.19994/j.cnki.WEE.2023.0045
文献标志码:
A
摘要:
剪切波速(VS)与标贯击数(N)之间存在相关关系,受地区土壤条件影响很大。对临沂地区场地实测得到的砂土的剪切波速和标贯击数之间的关系进行了统计分析,得到了砾砂、粗砂、中砂和细砂相应的关系曲线。结果发现受沉积环境的影响,砂土层粒径与埋深呈正相关,砂土粒径越大其密实段样本点数量越多。为消除不同密实程度段之间的相互影响,以密实度为划分标准进一步进行分区段统计分析,得到了不同密实程度的四类砂土的相关关系方程,通过实际钻孔数据对比了分段与不分段的统计分析结果,分段模拟能更好地反映两者之间的相关关系。将砂土根据密实度进行划分再给出剪切波速和标贯击数的回归关系可以提高分析结果的准确性,同时可以考虑土体特性的影响,更为科学。此研究为临沂地区提供了一种简便预估剪切波速的方法,对相关地区的工程建设和科学研究也具有参考价值。
Abstract:
There is a correlation between the shear wave velocity(VS)and standard penetration test blow count(N), which is greatly affected by the soil conditions in the region. The relationship between the shear wave velocity and standard penetration test blow count measured in the site in Linyi area was statistically analyzed, and the corresponding relationship curves of gravel, coarse sand, medium sand and fine sand were obtained. The results show that due to the influence of the sedimentary environment, the particle size of the sandy soil layer is positively correlated with the burial depth, and the larger the particle size of the sandy soil, the greater the number of sample points in the dense section. In order to eliminate the interaction between different density sections, the statistical analysis of the partition segments was further carried out with the compactness as the partitioning criterion, and the correlation equations of the four types of sand with different compactness degrees were obtained, and the accuracy of the two statistical methods was compared through the actual drilling data. Segmented simulations better reflect the relationship between the two. The regression relationship between the shear wave velocity and the standard penetration test blow coun can be divided according to the compactness of the sand, which can improve the accuracy of the analysis results, and consider the influence of soil characteristics, which is more scientific. This study provides a simple method for estimating shear wave velocity in Linyi area, and also has reference value for engineering construction and scientific research in related areas.

参考文献/References:

[1] 孔思丽, 程辉, 胡燕妮, 等. 工程地质学 [M]. 重庆: 重庆大学出版社, 2017.
KONG Sili, CHENG Hui, HU Yanni, et al. Engineering Geology[M].Chongqing: Chongqing University Press, 2017.(in Chinese)
[2] 兰景岩, 薄景山, 吕悦军. 剪切波速对设计反应谱的影响研究[J]. 震灾防御技术, 2007, 2(1): 19-24.
LAN Jingyan, BO Jingshan, LV Yuejun. Study on the effect of shear wave velocity on the design spectrum[J]. Technology for Earthquake Disaster Prevention, 2007, 2(1): 19-24.(in Chinese)
[3] 孙锐, 袁晓铭. 适于不同深度土层液化的剪切波速判别公式[J]. 岩土工程学报, 2019, 41(3): 439-447.
SUN Rui, YUAN Xiaoming. Depth-consistent vs-based approach for soil liquefaction evaluation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 439-447.(in Chinese)
[4] 刘红帅, 郑桐, 齐文浩, 等. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报, 2010, 32(7): 1142-1149.
LIU Hongshuai, ZHENG Tong, QI Wenhao, et al. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(7): 1142-1149.(in Chinese)
[5] 蔡宗文. 福建沿海剪切波速与土层参数定量关系研究[J]. 华南地震, 2003, 23(3): 76-80.
CAI Zongwen. The quantitative analysis between shear wave velocity and soil-layer parameters in Fujian Coastal Areas[J]. South China Journal of Seismology, 2003, 23(3): 76-80.(in Chinese)
[6] 王维铭, 李晓飞, 李元. 基于实测数据的场地特征参数与液化相关性分析[J]. 世界地震工程, 2016, 32(1): 8-14.
WANG Weiming, LI Xiaofei, LI Yuan. Measured data-based analysis of correlation between liquefactive characteristic parameters and liquefaction[J]. World Earthquake Engineering, 2016, 32(1): 8-14.(in Chinese)
[7] 常士骠,张苏民. 工程地质手册[M]. 4版. 北京: 中国建筑工业出版社, 2007.
CHANG Shibiao, ZHANG Sumin. Geological Engineering Handbook[M].4th ed. Beijing: China Architecture & Building Press, 2007.(in Chinese)
[8] 陈卓识. 现场剪切波速测试误差及其对地震动影响研究[J]. 国际地震动态, 2016, 46(3): 40-41.
CHEN Zhuoshi. Study on error of in situ shear wave velocity test and its influence on ground motion[J]. Recent Developments in World Seismology, 2016, 46(3): 40-41.(in Chinese)
[9] 高玉峰, 刘汉龙, 朱伟, 等. 剪切波速对砂土层地震反应的影响[J]. 工程勘察, 2001, 29(1): 39-42.
GAO Yufeng, LIU Hanlong, ZHU Wei, et al. Influences of shear wave velocity on the seismic response of sand ground[J]. Geotichnical Investigation and Surveying, 2001, 29(1): 39-42.(in Chinese)
[10] 李兆焱, 王梦龙, 吴晓阳. 唐山和巴楚地区液化土动力性能比较研究[J]. 地震工程与工程振动, 2016, 36(5): 162-167.
LI Zhaoyan, WANG Menglong, WU Xiaoyang. Relationship of dynamic performance of liquefied soil between Tangshan and Bachu regions[J]. Earthquake Engineering and Engineering Dynamics, 2016, 36(5): 162-167.(in Chinese)
[11] 刘福兴, 陈斌, 王辉球, 等. 黄河三角洲地区土层剪切波速与标贯击数关系统计分析[J]. 西部资源, 2018(2): 106-109.
LIU Fuxing, CHEN Bin, WANG Huiqiu, et al. Statistical analysis of the relationship between the soil shear wave velocity and the number of stand penetration test in the Yellow River Delta[J]. Western Resources, 2018(2): 106-109.(in Chinese)
[12] 刘颖. 静力触探试验与剪切波速测定在液化判别上的应用[J]. 工程勘察, 1986, 14(6): 27-29.
LIU Ying. Application of static cone penetration test and shear wave velocity measurement in liquefaction discrimination[J]. Geotechnical Investigation and Surveying, 1986, 14(6): 27-29.(in Chinese)
[13] 李存志, 李向新, 姚明波, 等. 昆明盆地剪切波速与地基特性相关分析研究[J]. 昆明冶金高等专科学校学报, 2006, 22(3): 1-5, 10.
LI Cunzhi, LI Xiangxin, YAO Mingbo, et al. Correlation analyses between shear wave velocity and ground properties of Kunming Basin[J]. Journal of Kunming Metallurgy College, 2006, 22(3): 1-5, 10.(in Chinese)
[14] 袁晓铭, 卢坤玉, 林颖, 等. 哈尔滨地区砂土层N-V关系特征曲线及对比研究[J]. 地震工程与工程振动, 2020, 40(6): 1-15.
YUAN Xiaoming, LU Kunyu, LIN Ying, et al. The N-V relationship curve of sand layers in Harbin region and its comparison with those in other regions of China[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(6): 1-15.(in Chinese)
[15] 邱志刚, 薄景山, 罗奇峰. 土壤剪切波速与标贯击数关系的统计分析[J]. 自然灾害学报, 2012, 21(2): 102-107.
QIU Zhigang, BO Jingshan, LUO Qifeng. Statistical analysis of relationship between shear wave velocity and standard penetration test blow count[J]. Journal of Natural Disasters, 2012, 21(2): 102-107.(in Chinese)
[16] 郑灿堂, 顾红鹰, 许尚杰, 等. 土的横波波速与标贯击数关系的实验研究[J]. 山东水利, 1999, 1(Z2): 92-93.
ZHENG Cantang, GU Hongying, XU Shangjie, et al. Experiment study on relationship between shear wave velocity and standard penetraton blow count[J]. Shandong Water Resources, 1999, 1(Z2): 92-93.(in Chinese)
[17] 陈卫兵, 吕颖慧, 江浩. 山东黄河冲积平原地区土标贯击数与剪切波速的相关性研究[J]. 土工基础, 2015, 29(1): 88-89, 93.
CHEN Weibing, LV Yinghui, JIANG Hao. Correlations between the SPT N values and the shear wave velocity of soils in Shandong Yellow River alluvial Plains[J]. Soil Engineering and Foundation, 2015, 29(1): 88-89, 93.(in Chinese)
[18] 左群超, 叶天竺, 冯艳芳, 等. 中国陆域1:25万分幅建造构造图空间数据库[J]. 中国地质,2018,45(增刊1):1-26,130-163.
ZUO Chaoqun, YE Tianzhu, FENG Yanfang, et al. Spatial database of serial suite-tectonic map-sheets of mainland China(1:250,000)[J]. Geology in China, 2018, 45(S1):1-26,130-163.(in Chinese)
[19] 王华林, 王纪强. 沂沭断裂带北段活动构造遥感地质解译与检验[J]. 测绘通报, 2012,(增刊1): 276-280.
WANG Hualin, WANG Jiqiang. The active tectonic remote sensing geological interpretation and inspection of the northern section of Yishu fault zone[J]. Bulletin of Surveying and Mapping, 2012,(S1): 276-280.(in Chinese)
[20] 孙晓猛, 王书琴, 王英德, 等. 郯庐断裂带北段构造特征及构造演化序列[J]. 岩石学报, 2010, 26(1): 165-176.
SUN Xiaomeng, WANG Shuqin, WANG Yingde, et al. The structural feature and evolutionary series in the northern segment of Tancheng-Lujiang fault zone[J]. Acta Petrologica Sinica, 2010, 26(1): 165-176.(in Chinese)
[21] 田洪水, 祝介旺, 王华林, 等. 沂沭断裂带及其近区地震事件地层的时空分布及意义[J]. 古地理学报, 2017, 19(3): 393-417.
TIAN Hongshui, ZHU Jiewang, WANG Hualin, et al. Spatio-temporal distribution and significance of seismic event horizon in the Yishu Fault Zone and its adjacent area[J]. Journal of Palaeogeography(Chinese Edition), 2017, 19(3): 393-417.(in Chinese)
[22] 田洪水, Antonius Johannes VAN LOON, 王华林, 等. 大盛群中的震积岩: 郯庐断裂带强构造与地震活动新证据[J]. 中国科学: 地球科学, 2016, 46(1): 79-96.
TIAN Hongshui, VAN LOON A J, WANG Hualin, et al. Seismites in the Dasheng Group: new evidences of strong tectonic and earthquake activities of the Tanlu Fault Zone[J]. Scientia Sinica(Terrae), 2016, 46(1): 79-96.(in Chinese)
[23] 黄兴, 胡宏玖, 王华林, 等. 沂沭断裂带构造区光弹实验与地震危险区判定研究[J]. 中国地震, 2015, 31(3): 529-543.
HUANG Xing, HU Hongjiu, WANG Hualin, et al. Photoelastic experimental simulation on Yishu fault zone and earthquake risk zone judgment[J]. Earthquake Research in China, 2015, 31(3): 529-543.(in Chinese)
[24] 陈卓识. 现场剪切波速测试误差及其对地震动影响研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2015.
CHEN Zhuoshi. The Study of Situ Shear Wave Velocity Test Error and Its Effects on Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2015.(in Chinese)
[25] 王德咏, 罗先启, 吴雪萍. 剪切波速与标准贯入击数N值的关系研究[J]. 路基工程, 2010(3): 29-31.
WANG Deyong, LUO Xianqi, WU Xueping. Study on the relationship between shear wave velocity and standard penetration compaction number N[J]. Subgrade Engineering, 2010(3): 29-31.(in Chinese)

相似文献/References:

[1]李平,薄景山,孙有为,等.西昌市场地剪切波速与土层深度经验关系[J].世界地震工程,2010,(04):013.
 LI Ping,BO Jingshan,SUN Youwei,et al.Empirical relationship between shear wave velocities and soil depths in Xichang city[J].,2010,(02):013.
[2]邱志刚,薄景山,罗奇峰.土壤剪切波速与埋深关系的统计分析[J].世界地震工程,2011,(03):081.
 QIU Zhigang,BO Jingshan,LUO Qifeng.Statistical analysis of relationship between shear wave velocity and depth of soil[J].,2011,(02):081.
[3]齐鑫,丁浩.下辽河平原区剪切波速与土层埋深关系分析[J].世界地震工程,2012,(03):151.
 QI Xin,DING Hao.Analysis of relationship between shear wave velocity and depth of soil layers in downstream Liaohe River plain[J].,2012,(02):151.
[4]董林,王峻,夏坤,等.剪切波速判别方法对黄土液化判别适用性研究[J].世界地震工程,2012,(04):155.
 DONG Lin,WANG Jun,XIA Kun,et al.Study on applicability of shear wave velocity method to liquefaction discrimination of loess[J].,2012,(02):155.
[5]裴强,雷焕珍,刘红帅.渤海浅表土层剪切波速与埋深间的关联性[J].世界地震工程,2013,(02):046.
 PEI Qiang,LEI Huanzhen,LIU Hongshuai.Correlation between shear wave velocity and depth of superficial soil layers in Bohai Sea[J].,2013,(02):046.
[6]徐国栋,马东辉,吴共湖,等.泉州市规划区场地抗震性能与土地适宜性分区研究[J].世界地震工程,2007,(04):153.
 XU Guo-dong,MA Dong-hui,WU Gong-hu,et al.Study on the site earthquake resistance and feasibility zone in Quanzhou city[J].,2007,(02):153.
[7]胡兆同,朱巍,刘健新.场地条件对桥梁减震设计效果的影响[J].世界地震工程,2008,(2):106.
 HU Zhaotong,ZHU Wei,LIU Jianxin.The effects of site conditions on performance of isolation bridges[J].,2008,(02):106.
[8]战吉艳,陈国兴,刘建达.苏州城区深软场地土剪切波速与土层深度的经验关系[J].世界地震工程,2009,(02):011.
 ZHAN Jiyan,CHEN Guoxing,LIU Jianda.Empirical relationship between shear wave velocity and soil depth on deep soft sites in urban area of Suzhou city[J].,2009,(02):011.
[9]李帅,赵纯青,刘志坚.新疆天山地区土层剪切波速与土层埋深的经验关系[J].世界地震工程,2014,(02):208.
 LI Shuai,ZHAO Chunqing,LIU Zhijian.Empirical relationship between shear wave velocity and soil depth in Tianshan area of Xinjiang[J].,2014,(02):208.
[10]周惠康,刘宇,刘红帅.剪切波速不确定性对地表反应谱平台值的影响[J].世界地震工程,2015,(01):115.
 ZHOU Huikang,LIU Yu,LIU Hongshuai.Effects of uncertainty of shear wave velocity on platform value of response spectrum of surface ground motion[J].,2015,(02):115.

备注/Memo

备注/Memo:
收稿日期:2022-10-24; 修回日期:2023-01-10
基金项目:山东省防震减灾十三五规划项目-临沂市国际生态城地震断层探测与地震危险性评价(SD135-2-3)
作者简介:岳庆霞(1979—),女,教授,工学博士,主要从事加固改造与抗震防灾研究. E-mail:yueqx@sdjzu.edu.cn

更新日期/Last Update: 1900-01-01